Project Icon

nntrainer

设备端神经网络训练与个性化框架

NNtrainer是专为资源受限的嵌入式设备设计的开源神经网络训练框架。支持k-NN、神经网络和逻辑回归等多种机器学习算法,提供少样本学习、ResNet和VGG等任务示例。通过设备端微调实现模型个性化,高效利用有限资源。NNtrainer独特之处在于支持设备端完整训练流程,而非仅限于推理。这使得它在保护用户数据隐私的同时,能够实现个性化模型优化。框架已在Samsung Galaxy智能手机和Ubuntu PC上验证可用。

FaceONNX - 跨平台人脸识别与分析库
GithubONNX人脸分析人脸识别开源项目深度神经网络跨平台
FaceONNX是基于ONNX运行时的人脸识别和分析库。它提供预训练的深度神经网络模型,用于人脸检测、特征点提取、性别年龄分类、情绪美貌分析及人脸嵌入比较。支持跨平台应用,提供.NET Standard 2.0版本,可通过NuGet包管理器集成。FaceONNX为开发者提供了实用的人脸分析工具。
training_extensions - OpenVINO框架助力快速训练和部署计算机视觉模型
GithubOpenVINO开源项目模型训练深度学习计算机视觉迁移学习
OpenVINO Training Extensions是一个专注计算机视觉的低代码迁移学习框架。它基于PyTorch和OpenVINO工具包开发,提供简洁API和CLI命令,支持分类、检测、分割等多种任务的模型训练、推理和部署。该框架具备自动配置、分布式训练、混合精度等功能,可快速构建高效准确的视觉AI模型。
efficientnet-b0 - EfficientNet的复合系数法在资源有限设备上提升图像分类效果
EfficientNetGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型模型缩放
EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。
NanoLLM - 本地LLM推理优化工具包
GithubJetsonLLM优化NanoLLM多模态AI开源项目本地推理
NanoLLM是一个开源工具包,专注于优化大型语言模型(LLM)的本地推理性能。它提供了类HuggingFace的API接口,支持模型量化、视觉语言模型、多模态代理、语音处理、向量数据库和检索增强生成(RAG)等功能。这个项目致力于简化LLM的部署和应用,特别适合需要高效本地推理的场景。NanoLLM目前的最新版本是24.7,可通过Docker容器方便部署。有兴趣的开发者可以访问项目的官方文档获取更多详细信息和使用指南。
transformerlab-app - 多功能大语言模型实验平台 支持本地操作和微调
GithubTransformer Lab人工智能开源软件开源项目模型训练语言模型
Transformer Lab是一个功能丰富的大语言模型实验平台。该应用支持一键下载多种流行模型、跨硬件微调、RLHF优化等功能。平台提供模型聊天、评估和RAG等交互方式,并具备REST API、云端运行和插件系统。Transformer Lab适用于多种操作系统,为AI研究和开发提供了便捷的工具。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
llama.onnx - LLaMa和RWKV模型的ONNX实现及独立演示,支持多设备部署
GithubLLaMaRWKVonnx模型开源项目推理量化
此项目提供LLaMa-7B和RWKV-400M的ONNX模型与独立演示,无需torch或transformers,适用于2GB内存设备。项目包括内存池支持、温度与topk logits调整,并提供导出混合精度和TVM转换的详细步骤,适用于嵌入式设备和分布式系统的大语言模型部署和推理。
natml-unity - 跨平台Unity机器学习集成工具
GithubNatML HubUnity开源项目性能优化机器学习跨平台
NatML是一款为Unity开发者设计的机器学习集成工具,支持多种ML模型格式和跨平台部署。它通过硬件加速提供高性能,并通过NatML Hub简化预训练模型的发现和使用。NatML允许开发者以少量代码实现复杂的机器学习功能,无需深厚的ML背景。该工具简化了Unity项目中机器学习的应用流程,提高了开发效率。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
Firefly - 开源大模型训练平台
FireflyGithubQLoRA大模型训练开源项目指令微调预训练
Firefly作为一个开源大模型训练工具,提供预训练、指令微调和DPO的全面解决方案。支持LoRA、QLoRA等高效训练技术,并涵盖多种主流大模型如Qwen2、Yi-1.5,特别适合显存和资源有限的环境。项目不仅开源多种数据集,还在Open LLM排行榜中展示了QLoRA训练的高效性,并与Unsloth合作,进一步优化了训练效率和显存使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号