Project Icon

Llama-3.1-Nemotron-70B-Instruct

NVIDIA定制的大型语言模型Nemotron-70B-Instruct提高AI回应有用性

Llama-3.1-Nemotron-70B-Instruct是NVIDIA基于Llama 3.1开发的大型语言模型,旨在提高AI生成回应的实用性。该模型在Arena Hard、AlpacaEval 2 LC和GPT-4-Turbo MT-Bench等评估基准中表现优异。通过RLHF技术和HelpSteer2-Preference数据集训练,Nemotron-70B-Instruct在多个自动对齐基准测试中名列前茅,性能超越了GPT-4和Claude 3.5 Sonnet等先进模型。

Llama-3.1-8B-Instruct - Meta推出的多语言大规模语言模型Llama 3.1
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B-Instruct是Meta开发的多语言大规模语言模型,支持8种语言的对话和自然语言生成。模型采用优化的Transformer架构,具有128K上下文长度,可用于商业和研究领域的文本及代码生成等任务。该模型遵循Llama 3.1社区许可,用户应确保合规使用。
Llama-3.1-405B-Instruct-FP8 - Meta开发的多语言大规模语言模型,支持对话和文本生成
GithubHuggingfaceLlama 3.1人工智能元模型多语言大语言模型开源项目模型
Llama-3.1-405B-Instruct-FP8是Meta公司开发的多语言大规模语言模型。该模型支持8种语言的文本输入输出,具有128K的上下文长度,采用优化的Transformer架构。模型在多语言对话和文本生成任务中表现优异,适用于助手式聊天和自然语言处理等领域。Meta为该模型提供了商业许可证,允许在遵守使用政策的前提下应用于商业和研究用途。
Llama-3.2-3B-Instruct - Meta开发的多语言对话和任务型AI模型
GithubHuggingfaceLlama 3.2Unsloth大语言模型开源开源项目模型模型微调
Llama-3.2-3B-Instruct是Meta公司开发的多语言大型语言模型,专为对话和任务处理而优化。该模型支持8种主要语言,在行业基准测试中表现出色。采用优化的Transformer架构,结合监督微调和人类反馈强化学习技术,Llama-3.2系列模型具备强大的推理能力和应用灵活性,适用于广泛的对话和任务处理场景。
Llama-3.2-3B-Instruct - Meta开发的多语言大型语言模型 支持对话和代理任务
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B-Instruct是Meta开发的多语言大型语言模型,采用优化的Transformer架构,支持1B和3B参数规模。模型通过微调和强化学习优化对话、检索和摘要能力,支持8种官方语言。具有128k上下文长度,使用分组查询注意力提高推理效率。适用于构建AI助手、知识检索等商业和研究应用。模型支持多语言扩展,可应用于更广泛的自然语言处理任务。
Meta-Llama-3-8B-Instruct - Meta开发的大规模语言模型 支持多种自然语言处理任务
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct是Meta公司开发的大型语言模型之一,参数规模为8B。该模型经过指令微调,优化了对话性能,在多项行业基准测试中表现优异。模型采用改进的Transformer架构,具有8k上下文窗口,适用于英语的商业和研究场景。它可用于开发聊天助手、生成文本等多种自然语言处理应用,在开发过程中重点关注了实用性和安全性。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1 8B多语言AI模型 具备128K上下文处理能力
GithubHuggingfaceLlama 3.1Meta多语言大语言模型开源开源项目模型
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3系列的最新版本,在多语言处理方面性能优异。该模型具有128K上下文窗口,经过15T token训练,包含2500万合成样本。作为开源领域的先进模型,它适用于广泛的AI任务。LM Studio用户可通过'Llama 3'预设轻松应用这一模型。
Llama-3.2-1B-Instruct-AWQ - Meta发布的开源多语言大型语言模型
GithubHuggingfaceLlama 3.2Meta多语言大语言模型开源项目模型自然语言生成
Llama-3.2-1B-Instruct是Meta开发的多语言大型语言模型,采用改进的transformer架构,支持128k上下文长度。该模型在对话、检索和摘要任务上表现优异,支持8种语言,包括英语、德语和法语等。它提供1B和3B两种参数规模,可通过transformers库或原生llama代码库部署,适用于商业和研究用途。
Llama-3.1-Nemotron-70B-Instruct-HF-GGUF - Llama-3.1-Nemotron-70B多级量化模型适配不同硬件
GPUGithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF人工智能开源项目模型语言模型量化
该项目为Llama-3.1-Nemotron-70B-Instruct-HF模型提供多种量化版本,涵盖Q8_0至IQ1_M级别。针对不同硬件和性能需求,项目提供详细的文件选择指南,并包含模型提示格式及下载方法说明。用户可根据设备选择适合的版本,便于快速部署和使用。
Llama-3.2-3B-Instruct-GGUF - Meta推出的新一代多语言AI对话模型 支持128K上下文
128K上下文GithubHuggingfaceLlama-3.2-3B-Instruct多语言对话模型开源项目模型社区模型
Llama-3.2-3B-Instruct是Meta发布的新一代多语言AI模型,针对对话、检索和摘要任务进行优化。官方支持8种语言,实际训练语言更多。模型具备128K长上下文能力,可处理复杂任务。社区贡献者bartowski基于llama.cpp提供GGUF量化版本,便于多设备部署。
Llama-3.2-11B-Vision-Instruct - 高效训练和部署具有多语言能力的大规模语言模型
GithubHuggingfaceLlama 3.2MetaUnsloth大语言模型开源项目模型模型微调
Llama-3.2-11B-Vision-Instruct是Meta开发的多语言大规模视觉语言模型,具备强大的对话和图像理解能力。该项目采用Unsloth技术,实现训练速度提升2.4倍,内存使用减少58%。模型支持英语、德语、法语等多种语言,适用于对话、检索、摘要等任务。项目提供简单易用的Colab笔记本,方便开发者进行模型微调和部署。Llama-3.2系列在多项行业基准测试中表现出色,超越了许多开源和闭源的对话模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号