Project Icon

parakeet-ctc-1.1b

高效自动语音识别模型,快速完成语音转录

parakeet-ctc-1.1b是由NVIDIA NeMo和Suno.ai团队开发的ASR模型,采用FastConformer架构,参数量约11亿。该模型适用于16kHz单声道音频,可以转录语音为小写英文。经过多数据集测试,字错率表现优异,如LibriSpeech clean数据集WER为1.83。利用NVIDIA NeMo工具包,该模型可用于推理或微调,适合多领域音频转录。

parakeet-tdt_ctc-1.1b - 高性能自动语音识别模型解决方案
GithubHuggingfaceNeMo开源项目快速同构体数据集模型自动语音识别词错误率
parakeet-tdt_ctc-1.1b提供了一个功能强大的语音识别模型,支持将语音转录为包含标点和大写字母的文本。由NVIDIA NeMo和Suno.ai团队联合开发,拥有1.1B的参数规模,能够高效地处理大规模的音频数据。该模型利用局部注意力和全局令牌技术实现单次处理11小时音频。其在多个公开数据集上的出色表现,表明其在语音转录应用中有广泛的适用性和较低的词错误率(WER)。
parakeet-rnnt-1.1b - 高性能英语语音识别模型实现优异音频转文本效果
FastConformerGithubHuggingfaceNeMoTransducer开源项目模型自动语音识别英语语音模型
parakeet-rnnt-1.1b是NVIDIA NeMo和Suno.ai联合开发的英语语音识别模型。基于FastConformer Transducer架构,该模型拥有11亿参数,在64000小时英语语音数据上训练。它能准确将语音转录为小写英文文本,并在多个标准数据集上表现出色。研究人员可通过NeMo工具包使用该模型进行推理或微调,适用于多种语音识别场景。
parakeet-tdt-1.1b - 先进的FastConformer-TDT英语语音识别模型
FastConformerGithubHuggingfaceNVIDIANeMoTDT开源项目模型语音识别
parakeet-tdt-1.1b是NVIDIA NeMo和Suno.ai团队联合开发的英语语音识别模型。采用FastConformer-TDT架构,拥有11亿参数,在多个测试集上表现优异,LibriSpeech clean测试集词错误率为1.39%。可通过NeMo工具包轻松集成使用,适用于多种语音转文本场景。
parakeet-tdt_ctc-110m - 流畅高效的FastConformer TDT-CTC语音识别解决方案
GithubHuggingfaceNVIDIA NeMo开源项目快速Conformer模型模型架构自动语音识别语音转写
该模型融合FastConformer与TDT-CTC架构,专为英文语音识别而优化,支持转录标点和大写字母。以高效架构处理长达20分钟音频数据,通过NVIDIA NeMo和Suno团队训练,在多个基准数据集中表现优异。通过NeMo工具包,预训练检查点便于进行模型推理或微调。
parakeet-rnnt-0.6b - 先进的英语语音识别模型 准确率达98.37%
FastConformerGithubHuggingfaceNeMoTransducer开源项目模型自动语音识别语音转文本
parakeet-rnnt-0.6b是NVIDIA NeMo和Suno.ai联合开发的英语语音识别模型。采用FastConformer Transducer架构,拥有约6亿参数。在LibriSpeech测试集上错误率仅1.63%,多个数据集上表现优异。支持16kHz单声道音频输入,可通过NeMo工具包使用,适用于多种语音转文本场景。
stt_en_conformer_ctc_large - 高级自动语音识别的Conformer-CTC模型及其与NVIDIA Riva的兼容性
Conformer-CTCGithubHuggingfaceNVIDIA RivaNeMo工具包开源项目模型自动语音转录语音识别
stt_en_conformer_ctc_large是一个非自回归的Conformer-CTC模型,通过NeMo工具包和多样的训练数据集,提高了语音识别的准确性和效率。模型可以识别多种英文语音样本,并与NVIDIA Riva兼容,支持生产级部署。该模型含有1.2亿个参数,处理16kHz单声道音频输入,并输出转录文本。适合用于推理和新数据集上的微调。结合外部语言模型,在多项测试中实现了低WER,适用于实时语音识别。
stt_en_conformer_transducer_xlarge - Conformer-Transducer模型的超大规模语音识别能力
GithubHuggingfaceNVIDIA ConformerNVIDIA Riva开源项目模型模型训练自动语音识别语音转录
Conformer-Transducer超大模型拥有600M参数,专为英语自动语音识别设计,以较低的字错误率(WER)脱颖而出。通过NVIDIA NeMo工具包训练,涵盖LibriSpeech、Mozilla Common Voice等多个数据集。模型支持Python调用,具备细化调优和批量处理功能,适合多种语音识别应用。虽然暂未兼容NVIDIA Riva,但其在英语语音处理方面表现卓越。
reverb-asr - 基于大规模人工标注数据的开源语音识别模型
GithubHuggingfaceReverb ASR人工智能开源项目模型自动语音转录语音处理语音识别
这是一个基于20万小时人工标注语音数据训练的开源语音识别系统。采用CTC/attention联合架构,同时支持CPU和GPU部署。系统的特色在于通过verbatimicity参数实现对转录详细程度的精确控制,可输出从简洁到完整逐字的多种转录风格。支持attention、CTC等多种解码方式,适合不同应用场景。
TensorflowASR - Tensorflow 2和Conformer结合的端到端语音识别解决方案
CTCConformerGithubONNXTensorflowASR开源项目语音识别
Tensorflow 2和Conformer结构打造的端到端语音识别模型,支持在线流式和离线识别,实时率约为0.1。该项目提供VAD、降噪、TTS数据增强等功能,并支持ONNX推理优化。训练结果在Aishell-1测试集上表现优异,适用于语音识别。最新更新的Chunk Conformer结构进一步提升了长时间语音识别的准确性和效率。
faster-whisper-large-v3-turbo-ct2 - 基于Whisper large-v3的多语言语音识别模型
CTranslate2GithubHuggingfaceWhisperfaster-whisper多语言支持开源项目模型语音识别
这是一个基于OpenAI Whisper large-v3模型优化的CTranslate2版本,专注于高效的语音识别。该模型支持100多种语言的转录,兼具准确性和速度。通过faster-whisper库,可以便捷地进行音频转录。模型采用FP16格式存储,计算类型可灵活调整。这为语音识别应用的开发提供了一个强大的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号