Project Icon

onnx-tensorrt

ONNX 的 TensorRT 后端

本项目实现对ONNX模型的高效解析,支持在最新TensorRT 10.2版本上运行。还覆盖了多个ONNX操作符,提供详细的安装和构建指南。项目中包含C++和Python的使用示例,方便用户集成和运行ONNX模型。常见问题解答和变更日志有助于解决使用中的问题。

YOLOv8-TensorRT-CPP - 用C++和TensorRT实现高效的YOLOv8模型推理
CPPGithubTensorRTYOLOv8开源项目深度学习目标检测
本文介绍了如何使用TensorRT的C++ API实现YOLOv8模型的推理,支持目标检测、语义分割和身体姿态估计,包括系统要求、安装步骤、模型转换和项目构建方法。内容中强调了在GPU上运行推理的注意事项和性能基准测试,提供了从PyTorch到ONNX模型转换的详细步骤,是开发计算机视觉应用的参考资料。
onnx-mlir - 基于LLVM/MLIR的高性能神经网络编译器
GithubLLVMONNXONNX-MLIR人工智能开源项目编译器
ONNX-MLIR是一个开源编译器项目,旨在将ONNX神经网络模型转换为高效的可执行代码。该项目基于LLVM/MLIR技术,实现了ONNX标准,并提供ONNX方言、编译器接口、驱动程序和多语言运行时环境。ONNX-MLIR支持Linux、macOS和Windows等多个平台,并提供Docker镜像以简化开发和部署流程。通过优化ONNX图,ONNX-MLIR能够生成性能卓越的神经网络实现。
espnet_onnx - 轻量级语音识别和合成库 基于ONNX格式优化
GithubONNXespnet_onnx开源项目模型导出语音合成语音识别
espnet_onnx是一个将ESPnet模型导出为ONNX格式的实用库,支持语音识别和语音合成任务。该库提供简洁的API接口,便于模型导出和推理。通过ONNX Runtime实现高效的CPU和GPU计算,并支持流式语音识别。用户可从预训练或自定义模型中轻松导出,并进行优化和量化以提升性能。无需PyTorch依赖,适合轻量级部署。
onnx-go - 面向Go语言的ONNX模型解析和运行接口
GithubGorgoniaGo语言ONNX开源项目深度学习神经网络
onnx-go项目提供了一个Go语言接口,用于解析和运行ONNX二进制模型,帮助开发者轻松集成机器学习功能。虽然其API仍然是实验性的,但它不需要数据科学方面的专业知识。该项目已停止维护,且随着深度学习领域的发展,预计会被新的解决方案取代。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
Paddle2ONNX - 将PaddlePaddle模型转换为ONNX格式的开源工具
GithubONNXPaddle2ONNXPaddlePaddle开源项目推理引擎模型转换
Paddle2ONNX 是一个开源工具,用于将PaddlePaddle模型转换为ONNX格式,使模型能够部署到多种ONNX支持的推理引擎如TensorRT、OpenVINO等。Paddle2ONNX不依赖其他组件,只需通过pip安装即可使用。它提供命令行接口和多种参数选项,支持模型优化与量化,适用于不同的部署需求。了解如何安装、使用及优化Paddle模型到ONNX格式,提升部署效率与性能。
sklearn-onnx - 将scikit-learn模型转换为ONNX格式的解决方案
GithubONNXonnxruntimescikit-learnsklearn-onnx开源项目模型转换
sklearn-onnx是一个工具,用于将scikit-learn模型转换为ONNX格式,并使用ONNX Runtime进行高性能评估。所有转换器都经过ONNX Runtime测试,用户还能注册外部转换器转换含外部库模型的scikit-learn管道。项目文档包括教程和常见问题解答,帮助用户快速上手。可通过PyPi或源码安装,支持多种操作系统,以提高机器学习模型性能。
BEVFormer_tensorrt - BEVFormer和BEVDet的TensorRT高效部署方案
BEV 3D DetectionGPU内存优化GithubTensorRT开源项目推理加速量化
本项目实现BEVFormer和BEVDet在TensorRT上的高效部署,支持FP32/FP16/INT8推理。通过优化TensorRT算子,BEVFormer base模型推理速度提升4倍,模型大小减少90%,GPU内存节省80%。同时支持MMDetection中2D目标检测模型的INT8量化部署。项目提供详细基准测试,展示不同配置下的精度和速度表现。
TensorRT-LLM - NVIDIA开发的大型语言模型推理优化工具
AI推理GPU加速GithubNVIDIATensorRT-LLM大语言模型开源项目
TensorRT-LLM是一个用于优化大型语言模型推理的开源工具。它提供Python API来定义模型和构建TensorRT引擎,支持多GPU和多节点部署。该工具集成了多种量化技术,如INT4/INT8权重量化和SmoothQuant,以提升性能和降低内存占用。TensorRT-LLM预置了多个常用模型,可根据需求进行修改和扩展。
onnx-modifier - 高效可视化编辑ONNX模型,自动处理减少重复工作
APIGithubONNX模型onnx-modifier可视化开源项目编辑工具
基于Netron和Flask的工具,提供完全可视化的ONNX模型编辑界面,通过Python ONNX API自动处理编辑信息。支持删除和添加节点、重命名节点和模型输入输出、编辑节点属性和模型初始值等多种操作,有效提升工作效率。该工具可通过命令行、可执行文件或Docker容器启动,适用于各种开发环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号