Project Icon

mmengine

深度学习训练引擎支持大规模模型训练和多种策略

MMEngine是基于PyTorch的深度学习模型训练基础库,作为OpenMMLab代码库的训练引擎。它集成主流大规模模型训练框架,支持混合精度训练等多种策略,提供友好的配置系统和主流监控平台支持。MMEngine不仅适用于OpenMMLab项目,还可广泛应用于其他深度学习项目。

traceml - 机器学习数据追踪与可视化工具,支持多种深度学习框架
GithubPolyaxonTraceML开源项目数据追踪机器学习深度学习
TraceML 是一款强大的工具,用于机器学习和数据的追踪、可视化、解释和漂移检测。它与 Keras、PyTorch、TensorFlow、Fastai、Pytorch Lightning 和 HuggingFace 等多种深度学习和机器学习框架集成,方便用户记录和跟踪实验数据。TraceML 支持离线模式、多种数据可视化接口,并能生成详细的数据框架总结。
SLAM-LLM - 专注语音语言音频音乐处理的多模态大模型训练工具
GithubSLAM-LLM多模态大语言模型开源项目语音处理音乐处理音频处理
SLAM-LLM是一款开源深度学习工具包,为多模态大语言模型(MLLM)训练而设计。它专注于语音、语言、音频和音乐处理,提供详细训练方案和高性能推理检查点。支持自动语音识别、文本转语音等多种任务,具备易扩展性、混合精度训练和多GPU训练等特点,适合研究人员和开发者使用。
soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
m2 - 子二次GEMM架构Monarch Mixer实现高效语言模型
GithubM2-BERTMonarch Mixer人工智能开源项目机器学习自然语言处理
Monarch Mixer是一种创新的子二次GEMM架构,用于训练序列长度和模型维度均为子二次的语言模型。该架构使用Monarch矩阵层替代Transformer中的注意力和MLP操作,提高了计算效率。基于此架构的M2-BERT模型在减少25%参数和计算量的同时,在GLUE基准测试中达到了与BERT相当的性能。项目开源了预训练模型权重以及预训练和微调代码,方便研究者进行further研究。
m3e-base - 中英双语文本嵌入模型,支持多种自然语言处理任务
GithubHuggingfaceM3Esentence-transformers开源项目微调文本嵌入文本相似度模型
M3E是一个开源的文本嵌入模型,在2200万+中文句对数据集上训练。该模型支持中英双语的文本相似度计算和检索,适用于文本分类、检索等多种自然语言处理任务。M3E在MTEB-zh基准测试中表现优异,多项指标超越了OpenAI的同类模型。它易于使用和微调,完全兼容sentence-transformers生态系统。
honeybee - 优化多模态大语言模型性能的局部性增强投影器
GithubHoneybee多模态大语言模型局部性增强投影器开源项目深度学习计算机视觉
Honeybee项目通过局部性增强投影器提升多模态大语言模型性能。该项目在MMB、MME、SEED-I等基准测试中表现优异,提供预训练和微调模型检查点。Honeybee支持多种数据集,包含详细的数据准备、训练和评估指南,为多模态AI研究和开发提供开源工具。
multi-model-server - 深度学习模型的部署工具
DockerGithubMulti Model ServerPython开源项目模型服务深度学习
Multi Model Server是一个灵活的工具,用于部署由各种ML/DL框架训练的深度学习模型。通过命令行界面或预配置的Docker镜像,可以快速设置HTTP端点处理模型推理请求。支持Python 2.7和3.6,提供适合CPU和GPU推理的不同MXNet pip包。详细的文档和使用示例,以及Slack频道和社区支持,进一步简化了用户使用体验。推荐在生产环境中使用Docker容器以提升安全性和性能。
DeepSeek-MoE - 创新MoE架构打造高效大规模语言模型
DeepSeekMoEGithubMoE架构大语言模型开源模型开源项目模型评估
DeepSeek-MoE项目开发了创新的混合专家架构语言模型,采用细粒度专家分割和共享专家隔离策略。该16.4B参数模型仅使用40%计算量就达到DeepSeek 7B和LLaMA2 7B的性能水平。模型可在单个40GB内存GPU上直接部署运行,无需量化,为学术和商业研究提供了高效便捷的工具。
llm-finetuning - Modal和axolotl驱动的大语言模型高效微调框架
DeepSpeedGithubLLM微调LoRAModalaxolotl开源项目
这个开源项目整合了Modal和axolotl,为大语言模型微调提供了一个高效框架。它采用Deepspeed ZeRO、LoRA适配器和Flash Attention等先进技术,实现了高性能的模型训练。该框架支持云端部署,简化了资源管理流程,并可灵活适配不同模型和数据集。项目还提供了全面的配置说明和使用指南,方便开发者快速上手和定制化应用。
mt-dnn - 多任务深度神经网络在自然语言理解中的最新应用
GithubMT-DNNPyTorch多任务深度神经网络开源项目自然语言理解预训练模型
该项目实现了基于PyTorch的多任务深度神经网络(MT-DNN),主要用于自然语言理解。最新版本添加了语言模型预训练和微调的对抗性训练功能。用户可以使用pip安装或通过Docker快速启动,项目提供详细的训练和微调步骤,支持序列标注和问答任务。此外,项目包含模型嵌入提取和训练加速功能。目前由于政策变化,公共存储解决方案暂不提供。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号