Project Icon

mmyolo

YOLO算法与实时对象识别工具包

MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。

yomo - 开源LLM函数调用框架和地理分布式AI应用构建平台
AIGithubQUICYoMo地理分布式开源项目无服务器架构
YoMo是一个开源的地理分布式AI应用构建平台,采用QUIC协议及有状态无服务器架构,提升AI应用的效率和安全性,优化用户体验。
Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
YOLOv5-Lite - 轻量级高性能目标检测模型的优化与部署
GithubYOLOv5-Liteablation实验开源项目性能优化模型比较部署
YOLOv5-Lite通过优化YOLOv5模型实现了轻量化、加速推理和简化部署。通过消融实验减少了Flops、内存占用和参数,并采用Shuffle Channel和YOLOv5 Head降低Channels。在Raspberry Pi 4B上输入320×320帧能达到至少10+ FPS。该项目提供各种测试模型和对比结果,展示在多种硬件平台上的性能,并包含详细的教程和下载链接。
ssd.pytorch - PyTorch实现的高效SSD目标检测器,兼容多数据集与实时可视化
GithubPyTorchSSD开源项目数据集训练评估
该项目实现了基于PyTorch的SSD目标检测器,支持VOC和COCO数据集,并可使用Visdom进行训练过程中的实时损失可视化。页面包含详细的安装、训练和评估指南,并提供预训练模型的使用说明。项目展示了高效性能,并包含未来功能更新计划,帮助开发者快速上手并扩展应用。
trt_yolo_video_pipeline - 基于TensorRT的多路视频分析处理框架
GithubTensorRT多路并发开源项目目标检测硬件编解码视频分析
TRT-VideoPipeline是一个基于TensorRT的多路视频分析处理框架。该项目支持YOLO系列模型推理,实现单模型多显卡多实例负载调度,并利用GPU进行数据处理。框架支持NVIDIA硬件编解码,可处理RTSP、RTMP、MP4等多种视频格式。其模块化设计便于功能节点的灵活组合,适应不同应用场景。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
Holocron - 深度学习计算机视觉技巧的高效实现与应用
GithubHolocronPyTorch开源项目模型深度学习计算机视觉
Holocron项目提供深度学习计算机视觉最新技术的高效实现,增强开发者灵活性并与PyTorch生态系统兼容。支持多种图像分类、目标检测和语义分割模型,包括Res2Net、Darknet和YOLO等。项目附带详细文档、示例代码和实时演示,助力开发者快速上手并部署高性能视觉解决方案,并提供多种优化算法和工具提升训练效率与准确性。适用于追求前沿性能和灵活开发环境的研究人员和工程师。
pylabel - 图像数据集转换与标注工具
GithubPyLabelPython包图像数据集开源项目注释转换目标检测
PyLabel是一个Python包,可用于为计算机视觉模型(如PyTorch和YOLOv5)准备图像数据集。该工具支持在不同标注格式之间进行转换(如COCO到YOLO),并在Jupyter notebook中提供AI辅助标注功能。PyLabel允许使用单行代码转换标注格式,将注释数据存储在pandas DataFrame中便于分析,按类分层将数据集分为训练集、测试集和验证集,并支持带边界框的图像可视化,从而使图像数据处理更高效便捷。
mim - OpenMMLab项目的统一管理和运行工具
GithubMIMOpenMMLab包管理命令行工具开源项目模型管理
MIM为OpenMMLab项目提供统一的管理接口,简化了包的安装卸载和模型库管理。它通过统一入口点简化了训练、测试和推理过程,并支持自定义项目构建和网格搜索,提高了开发效率和实验灵活性。
yolov5n-license-plate - 基于YOLOv5的轻量级车牌检测模型
GithubHuggingfacePyTorchYOLOv5开源项目机器视觉模型目标检测车牌识别
基于YOLOv5架构开发的轻量级车牌检测模型,通过pip快速安装部署。模型支持自定义参数配置,包括置信度阈值和IoU阈值调节,并集成了数据增强功能。提供完整的模型加载、推理和微调接口,可用于实际车牌检测场景,在验证集上展现出较高的检测精度。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号