Project Icon

transformer-debugger

深入洞察小型语言模型行为的自动化调试工具

Transformer Debugger是一款由OpenAI超级对齐团队开发的工具,专门用于分析小型语言模型的特定行为。该工具结合了自动化解释技术和稀疏自编码器,无需编写代码即可快速探索模型行为。它能识别影响特定行为的关键组件,自动生成解释,并追踪组件间的连接,从而揭示神经元回路。通过支持对前向传播的干预和观察,Transformer Debugger为研究人员提供了深入分析语言模型内部机制的强大功能。

model-explorer - AI模型结构可视化与分析工具
GithubModel Explorer开源项目模型分析模型可视化模型调试深度学习
Model Explorer是一款AI模型结构可视化工具,支持TFLite、TF、TFJS、MLIR和PyTorch等多种格式。它提供层级化展示,允许动态展开或折叠各层,并具备高亮输入输出、元数据叠加、交互式弹窗等功能。工具还支持搜索、显示相同层和GPU加速渲染,方便开发者进行模型探索和调试。Model Explorer提供扩展框架,便于添加对其他格式的支持。
llm-analysis - 大型语言模型训练与推理的延迟和内存使用分析工具
GithubTransformer模型llm-analysis内存分析大语言模型延迟分析开源项目
llm-analysis 是一款为大型语言模型(LLMs),如Transformer设计的工具,用于在不同的模型、GPU、数据类型和并行配置下估算训练与推理的延迟和内存使用。通过简单设置,可以快速计算出不同训练和推理方案的系统性能,以确定最优和可行的配置方案。此外,llm-analysis 支持多种并行化和重计算策略,并提供多种预定义配置和命令行接口,极大简化了配置和调试流程。它功能强大且易于集成,是开发和优化LLMs的理想工具。
Anomaly-Transformer - 创新时间序列异常检测模型的新方法
Anomaly-TransformerGithub开源项目异常检测无监督学习时间序列注意力机制
Anomaly-Transformer是一种时间序列异常检测模型,利用关联差异作为可区分标准,并结合Anomaly-Attention机制和极小极大策略提高检测效果。该模型在多个基准数据集上展现出优秀性能,为无监督时间序列异常检测领域提供了新的解决方案。
tuned-lens - 变压器模型分层预测机制的解析工具
GithubTuned Lenstransformer开源项目机器学习模型解释自然语言处理
Tuned Lens是一个开源工具包,用于分析变压器模型的分层预测过程。该工具通过训练和评估调谐镜头,展示了模型如何逐层构建预测。它使用仿射变换替代模型后几层,从中间表示中提取最佳预测,为研究人员提供了深入了解模型内部机制的方法。
1 - 开源自然语言处理工具库提升文本处理效率
AI模型GithubHuggingfacetransformers开源项目机器学习模型深度学习自然语言处理
transformers是一个开源自然语言处理工具包,旨在通过简化模型训练和应用,提升机器学习项目的效率。该库提供丰富功能和预训练模型,便于执行各种文本分析和生成任务。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
Transformer_Tracking - 视觉追踪中Transformer应用的全面综述和前沿动态
GithubTransformer开源项目深度学习目标检测视觉跟踪计算机视觉
本项目汇总了Transformer在视觉追踪领域的应用进展,包括统一追踪、单目标追踪和3D单目标追踪等方向。内容涵盖最新研究论文、技术趋势分析、基准测试结果以及学习资源,为相关研究人员和从业者提供全面的参考信息。重点关注自回归时序建模、联合特征提取与交互等前沿技术,展现了视觉追踪的最新发展动态。
transformer-models - MATLAB深度学习变换器模型实现库
BERTGithubMATLABTransformer开源项目深度学习自然语言处理
该项目提供MATLAB环境下的多种深度学习变换器模型实现,包括BERT、FinBERT和GPT-2。支持文本分类、情感分析、掩码标记预测和文本摘要等自然语言处理任务。项目特点包括预训练模型加载、模型微调、详细示例和灵活API,可用于研究和实际应用。
transformers - 免费开源的transformers课程,详解关键概念与实践操作
BERTGithubtransformers多头注意力机制开源项目自注意力机制课程
该课程由软件工程师Peter发起,现正免费且开放源码。内容涵盖transformers的关键概念、实践练习和学术论文剖析。通过YouTube视频讲解和Jupyter笔记本实操,深入学习编码器-解码器架构、自注意力、多头注意力等核心概念,并从零开始构建简单的transformer模型。亦包含如何微调BERT和GPT-2等预训练模型及进行特定任务处理和文本生成。
other - 高性能开源自然语言处理框架
GithubHuggingfacetransformers人工智能开源项目机器学习模型深度学习自然语言处理
Transformers是一个开源的自然语言处理框架,提供多种预训练模型和工具。支持文本分类、问答和生成等任务,适用于研究和生产环境。该框架易用且灵活,可处理多语言文本,支持迁移学习。Transformers定期更新,紧跟NLP领域最新进展,为用户提供丰富的API和优化的性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号