Project Icon

sbert-all-MiniLM-L6-with-pooler

基于MiniLM的384维句子向量化模型

sbert-all-MiniLM-L6-with-pooler基于sentence-transformers框架开发,将文本映射为384维向量表示。该模型在10亿对句子数据集上完成训练,可应用于文本聚类和语义搜索等场景。模型通过Hugging Face Optimum实现,支持便捷的特征提取功能。

paraphrase-albert-small-v2 - ALBERT轻量级句子嵌入模型实现语义相似度分析
ALBERTGithubHuggingfacesentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
paraphrase-albert-small-v2是一个基于ALBERT架构的轻量级句子嵌入模型。它将句子转换为768维向量表示,可用于语义搜索、聚类等自然语言处理任务。该模型支持Python等多种编程接口,便于集成到各类应用中。在句子相似度基准测试中表现优异,为文本语义分析提供了高效可靠的解决方案。
multi-qa-mpnet-base-cos-v1 - 面向语义搜索的句子向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入机器学习模型自然语言处理语义搜索
multi-qa-mpnet-base-cos-v1是一个基于sentence-transformers的语义搜索模型。该模型将句子和段落映射为768维向量,通过215M个多样化问答对训练而成。它支持句子相似度计算和特征提取,适用于信息检索和问答系统等应用。模型提供简洁API,可使用点积或余弦相似度计算文本相似度。
labse_bert - 多语言BERT句子嵌入模型及其应用
GithubHuggingfaceLABSE BERT句子嵌入多语言处理开源项目模型模型应用自然语言处理
LaBSE BERT是一种语言无关的句子嵌入模型,由Fangxiaoyu Feng等人开发并在TensorFlow Hub上提供。该模型能够将文本转换为高效的向量表示,适用于多语言文本处理。利用AutoTokenizer和AutoModel加载模型,并通过mean_pooling方法获取句子嵌入,以增强文本分析和信息检索等领域的性能。使用PyTorch实现编码和处理,多语言文本分析更加轻松。
sentence-transformers - 多语言文本和图像嵌入向量生成框架
GithubSentence Transformers向量表示开源项目深度学习自然语言处理预训练模型
sentence-transformers是一个基于transformer网络的框架,用于生成句子、段落和图像的向量表示。该项目提供了多语言预训练模型,支持自定义训练,适用于语义搜索、相似度计算、聚类等场景。这个开源工具在自然语言处理和计算机视觉任务中表现出色,为研究人员和开发者提供了便捷的嵌入向量生成方案。
bert-large-nli-mean-tokens - 句子相似性嵌入与聚类应用
BERTGithubHuggingfacesentence-transformers句子嵌入句子相似性开源项目模型预训练模型
该模型为sentence-transformers的一部分,能够将句子和段落转化为1024维的密集向量空间,用于聚类和语义搜索。虽然该模型已被标记为弃用且句子嵌入质量较低,推荐选择其他更优质的模型。适用的工具可以通过pip安装,并提供Python实现的代码示例。尽管如此,该模型仍作为一种句子嵌入学习方法的参考,对自然语言处理技术爱好者具有借鉴意义。
MINI_LLM - 完整中文大语言模型训练流程实践
DPOGithubMini-llm大模型开源项目微调预训练
MINI_LLM项目展示了完整的中文大语言模型训练流程,涵盖预训练、SFT指令微调和DPO优化阶段。该项目基于QWEN模型,利用多种数据集训练出1.4B参数规模的模型。项目详细介绍了数据处理方法、提供训练脚本,并包含多GPU训练指南,为中文大语言模型开发提供了实用参考。
build_MiniLLM_from_scratch - 小规模参数LLM构建指南,支持多轮对话与聊天模型
GithubTorch4kerasbert4torchbuild_MiniLLM_from_scratch开源项目指令微调预训练
该项目详细介绍了如何从零开始构建小规模参数的语言模型(LLM),经过预训练、指令微调、奖励模型和强化学习四个阶段。项目基于bert4torch训练框架,优化内存占用,并提供完整的训练日志以供复现。模型支持与transformers兼容,能够进行多轮对话。项目也开源了预训练语料和权重,方便用户下载和使用,提升了实用性与操作性。
llm-toys - 微调小型语言模型实现多任务处理
Githubllm-toys任务微调低资源模型对话摘要开源项目语气变化
llm-toys 项目提供适用于释义、语气转换、对话总结和主题生成等任务的小型量化3B和7B语言模型。这些经过微调的模型能在普通消费级硬件上高效运行,并通过简单的安装步骤提升文本处理和生成能力。
MiniCPM - 轻量级大语言模型实现高性能端侧部署
GithubMiniCPM多模态开源模型开源项目模型量化端侧大语言模型
MiniCPM是一系列高效的端侧大语言模型,仅有2.4B非词嵌入参数。经过优化后,在多项评测中表现优异,甚至超越了一些参数量更大的模型。该项目支持多模态功能,可在移动设备上流畅运行。MiniCPM开源了多个版本,涵盖文本、多模态、量化和长文本等应用场景,适用于学术研究和特定商业用途。这一开源项目由面壁智能与清华大学自然语言处理实验室联合开发。
open-text-embeddings - 使用多源模型的OpenAI API兼容文本向量生成工具
GithubLangChainOpenAI APIembeddingsopen-text-embeddingssentence-transformers开源项目
该项目创建了与OpenAI API兼容的文本向量生成端点,支持多种开源句子转换模型,包括BAAI/bge-large-en、intfloat/e5-large-v2、sentence-transformers等。提供详细的本地和云端部署指南,方便用户在多种环境下运行服务器,实现高效查询与存储。用户也可通过Colab在线测试,体验开源文本向量生成的便捷性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号