Project Icon

phikon

基于ViT的组织病理学自监督学习模型

Phikon是一个使用iBOT训练的组织病理学自监督学习模型。它是由Owkin开发的Vision Transformer Base模型,包含8580万个参数,支持224x224x3的图像输入。该模型在4000万个泛癌症图像块上进行了预训练,可用于从组织学图像中提取特征,并应用于多种癌症亚型的分类任务。通过微调,Phikon可以适应特定癌症亚型的研究需求。

Vision-RWKV - 基于RWKV架构的高效视觉感知模型
GithubVision-RWKV图像处理开源项目深度学习神经网络计算机视觉
Vision-RWKV是一种基于RWKV架构的视觉感知模型。该模型可高效处理高分辨率图像,具有全局感受野,并通过大规模数据集预训练实现良好扩展性。在图像分类任务中,Vision-RWKV性能超越ViT模型;在密集预测任务中,它以更低计算量和更快速度胜过基于窗口的ViT,并与全局注意力ViT相当。Vision-RWKV展现出成为多种视觉任务中ViT替代方案的潜力。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
mobilevit-xx-small - 轻量级移动端视觉转换模型,适用于通用图像分类
GithubHuggingfaceImageNet-1kMobileViTTransformer卷积神经网络图像分类开源项目模型
MobileViT模型的设计同时保证了轻量和低延迟性能,通过结合MobileNetV2和全局处理变换器块,适合各种图像分类应用。模型无需位置嵌入,已在ImageNet-1k数据集预训练并取得69%的top-1准确率。训练过程中采用简单的数据增强方法,可无须微调即可学到多尺度特征。目前支持PyTorch框架。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
vit-base-patch16-224-cifar10 - 视觉Transformer在CIFAR10上的图像分类优化
CIFAR10GithubHuggingfaceVision Transformer图像分类开源项目模型模型微调深度学习
Vision Transformer (ViT) 模型经过ImageNet-21k数据集的预训练,并在CIFAR10数据集上微调,适用于224x224分辨率的图像分类任务。采用16x16像素的固定大小图像补丁进行特征提取,为下游任务提供了有效支持。在GitHub上访问相关代码,了解如何将该技术应用到各种项目中。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
CLIP ViT-B/32GithubHuggingfaceLAION-5B图像分类多语言性能开源项目模型零样本学习
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。
ViT-Prisma - 视觉变换器和CLIP模型机制解析开源库
GithubVision Transformer图像处理开源库开源项目机器学习解释性神经网络可视化
ViT-Prisma是一个专注于Vision Transformer和CLIP模型的开源机制解析库。它提供logit归因、注意力可视化和激活修补等技术,用于深入分析模型内部机制。该库还包含ViT训练代码和预训练模型,支持ImageNet-1k和dSprites分类任务。ViT-Prisma为视觉模型可解释性研究提供了实用的工具集。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取预训练模型
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
breast_cancer_classifier - 深度学习模型助力乳腺癌筛查增强放射科医师诊断能力
Deep Neural NetworksGithubPyTorchbreast cancermammographyradiologists开源项目
该开源项目提供基于深度学习的预训练模型,能够提升乳腺癌筛查的准确性。项目包含仅图像和图像+热图两种模型,适用于标准视图的乳腺X光检查,支持GPU加速,使用Python和PyTorch实现,提供详细的示例数据和预测结果。
vit_base_patch16_224.orig_in21k_ft_in1k - 基于ImageNet大规模数据集的Vision Transformer模型
GithubHuggingfaceImageNetPyTorchVision Transformertimm图像分类开源项目模型
该Vision Transformer模型经过ImageNet-21k数据集预训练并在ImageNet-1k上微调,采用86.6M参数,适用于224x224图像的分类与特征提取。最初由论文作者在JAX上训练,并由Ross Wightman移植到PyTorch环境,可应用于图像分类和嵌入场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号