Project Icon

pflowtts_pytorch

高效零样本语音合成模型

pflowtts_pytorch是P-Flow论文的一个非官方实现,提供了基于语音提示的零样本文本转语音功能。该模型采用语音提示文本编码器和流匹配生成解码器,仅需少量训练数据即可实现与大规模模型相当的说话人相似度,同时具有显著更快的采样速度。在发音准确性和语音自然度方面表现出色,为高效率和高质量的语音合成提供了新的解决方案。

TTS - 多语言支持和低延迟的先进文本到语音转换技术
Coqui.aiGithubTTS多语言开源项目深度学习语音合成
🐸TTS库提供多达16种语言的高级文本到语音转换模型,支持低于200毫秒的流媒体延迟。它包含丰富的工具用于模型训练和微调,并且拥有超过1100种预训练模型,适用于多语言和多说话人TTS任务。此外,该库还支持高效的语料库分析和管理,为语音合成提供全面支持。
NATSpeech - 非自回归文本转语音 (NAR-TTS) 框架
DiffSpeechGithubNATSpeechPortaSpeechPyTorchText-to-Speech开源项目
NATSpeech框架是一款高效的非自回归文本至语音转换系统,特点为便捷的操作、可扩展性强,并采用精准的数据处理技术。框架包括PortaSpeech与DiffSinger两种高质量语音合成技术,适用于高端研究与商业应用,配备详尽的技术文档及安装指导。
DiffGAN-TTS - 采用去噪扩散生成对抗网络技术的文本到语音转换技术
DiffGAN-TTSGithubPyTorch多说话者TTS开源项目文本到语音训练模型
DiffGAN-TTS采用去噪扩散生成对抗网络技术,通过激活浅层扩散机制,提供了一种高效且高保真的文本到语音转换方案。该技术支持多种发音特征和语种,实现了保持语音自然度的同时,进行灵活的语音控制,包括音调和语速的调整。此技术适用于多语言和多说话人场景,为深度学习语音合成领域提供了新的可能性。
T0_3B - 小规模T0模型超越GPT-3,进行零样本自然语言任务处理
GithubHuggingfaceT0偏见与公平性开源项目模型模型训练自然语言处理评估数据
T0*模型通过自然语言提示实现零样本任务泛化,性能超越GPT-3,且模型体积缩小至16分之一。该模型在多任务提示数据集中微调,能够针对未见任务做出高效预测。适用于多种推理场景,包括情感分析、句子重排列和词义判断等。其训练数据源自多个数据集并经过严谨评估,保障模型性能可靠性。虽然T0*模型参数较大,但通过优化和并行化方案能够有效应用于多GPU环境。
vall-e - 零样本文本到语音神经编解码器语言模型
GithubPyTorchVALL-E人工智能开源项目模型训练语音合成
VALL-E是一个基于PyTorch的开源项目,通过神经编解码器语言模型实现零样本文本到语音的转换。该模型可在单GPU上训练,能模拟特定说话者的语音,并采取了措施以防止技术的潜在滥用。然而,开发者没有提供完全训练的模型和服务。VALL-E提供了包括英语和中文在内的多语种语音技术支持,是语音技术研究的有益工具。
StyleSpeech - 多说话人自适应文本转语音生成
GithubMeta-StyleSpeech开源项目文本到语音自适应音质预训练模型
Meta-StyleSpeech项目结合最新的多说话者适应性文本到语音合成技术,通过样本少量的语音输入即可生成高质量合成语音。该项目运用风格自适应层归一化技术,高效适配不同说话者的声音特征。提供预训练模型和在线演示供实际应用测试。
Real-Time-Voice-Cloning - 实时语音克隆与多声源文本到语音转换技术
GithubSV2TTS多说话者文本转语音合成实时语音克隆开源项目深度学习热门语音合成
Real-Time Voice Cloning是一个基于深度学习的实时语音克隆工具,能够通过简短语音样本快速创建个性化语音模型。项目实现了从说话人验证到多说话人文本到语音合成的框架(SV2TTS),并配备了实时工作的声码器。适用于需要个性化语音合成的开发者和研究人员,支持多种数据集,提供预训练模型以简化使用和实验过程。
Bridge-TTS - 创新方法提升文本转语音合成效果
Bridge-TTSGithubSchrodinger Bridge开源项目文本转语音机器学习语音合成
Bridge-TTS是一个革新性的文本转语音(TTS)项目,利用人工智能和机器学习技术,通过创新的数据处理方法优化语音合成。无论在简单还是复杂的应用场景中,它都显著优于传统的扩散模型。这一突破不仅提升了TTS技术水平,还为语音合成和相关人工智能领域开辟了新的研究方向。项目详情、研究方法和结果可在官方网站查阅,完整源代码将在论文被学术界正式接受后公开发布。
T0pp - 多任务语言模型展现跨任务零样本泛化能力
GithubHuggingfaceT0多任务学习开源项目模型自然语言处理语言模型零样本学习
T0是一系列基于T5的编码器-解码器模型,通过多任务微调实现零样本跨任务泛化。该模型在多项自然语言处理任务中表现优于GPT-3,参数量仅为其1/16。T0能够根据自然语言指令完成情感分析、阅读理解、逻辑推理等未见任务。研究还评估了模型在性别偏见识别和复现方面的表现。
ControlSpeech - 实现零样本语音克隆和风格控制的开源工具包
ControlSpeechGithub开源项目评估指标语言风格控制语音合成零样本说话人克隆
ControlSpeech是一个开源的语音合成项目,专注于实现零样本说话人克隆和语言风格控制。项目包含基线模型、VccmDataset数据集、评估指标和复现代码。通过解耦编解码器技术,ControlSpeech为研究人员和开发者提供了探索灵活语音合成的工具。该项目可应用于个性化语音助手、多语言配音等领域,为语音合成技术的研究和应用提供新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号