Project Icon

UltraFastBERT

指数级加速的BERT语言模型训练与推理方案

UltraFastBERT是一个开源项目,旨在通过创新的快速前馈(FFF)层设计实现BERT语言模型的指数级加速。项目提供了完整的训练代码,以及在CPU、PyTorch和CUDA平台上的高效实现。包含训练文件夹、各平台基准测试代码,以及UltraFastBERT-1x11-long模型的配置和权重,可通过HuggingFace轻松加载使用。研究人员可以方便地复现结果,并进一步探索该突破性技术在自然语言处理领域的广泛应用潜力。

MiniLM-L12-H384-uncased - 轻量快速的预训练语言模型实现BERT级别性能表现
BERTGithubHuggingfaceMiniLM开源项目模型模型压缩深度学习自然语言处理
MiniLM-L12-H384-uncased通过模型压缩技术将参数量降至33M,在保持与BERT相当性能的同时,运行速度提升2.7倍。模型在SQuAD 2.0和GLUE等自然语言理解任务中表现出色,可直接替代BERT,适用于对模型体积和运行效率敏感的场景。
bert_uncased_L-4_H-512_A-8 - BERT小型模型为资源受限环境提供高效自然语言处理解决方案
BERTGLUEGithubHuggingface开源项目模型模型压缩知识蒸馏自然语言处理
BERT小型模型是为计算资源受限环境设计的自然语言处理工具。它保留了标准BERT架构和训练目标,但模型规模更小,适用于多种应用场景。这种模型在知识蒸馏中表现出色,可利用更大、更精确的模型生成微调标签。其目标是促进资源有限机构的研究工作,并鼓励学术界探索模型创新的新方向,而非仅仅增加模型容量。
TinyBERT_General_4L_312D - 轻量级自然语言处理模型 提升理解效率
BERT模型压缩GithubHuggingfaceTinyBERTtransformer模型开源项目模型模型蒸馏自然语言理解
TinyBERT_General_4L_312D是一个经过知识蒸馏的轻量级自然语言处理模型。相比原始BERT模型,它的体积减小了7.5倍,推理速度提升了9.4倍,同时保持了竞争性能。该模型在预训练和任务特定学习阶段都应用了创新的Transformer蒸馏技术。TinyBERT为各类自然语言处理任务提供了高效的基础,尤其适用于计算资源受限的应用场景。
xFasterTransformer - 高效的大规模语言模型推理优化方案
GithubPython APIXeonxFasterTransformer大语言模型开源项目高性能
xFasterTransformer是一个为X86平台优化的大规模语言模型(LLM)推理解决方案,支持多插槽和节点的分布式运行,适用于大型模型推理。它提供C++和Python API,支持例如ChatGLM、Llama、Baichuan等流行的LLM模型,并可通过PyPI、Docker或从源代码进行安装。项目附带详细文档、API使用示例、基准测试代码和Web演示,确保用户能充分利用其高性能和高扩展性。
bert_uncased_L-2_H-512_A-8 - 小型BERT模型在资源受限环境中的表现及应用策略
BERTGLUEGithubHuggingface开源项目模型模型训练知识蒸馏计算资源
24款小型BERT模型在低计算资源环境中通过知识蒸馏实现有效性能,支持与BERT-Base和BERT-Large相同的微调模式。这些模型为中小型机构的研究提供了创新支持,尤其是在GLUE测试中通过优化批大小和学习率等微调参数。这些模型为探索非传统扩容的创新应用提供了可能性。
cramming - 探索单GPU一天内训练BERT语言模型的极限
BERTCramming Language ModelGLUEGithubPyTorchTransformer-based language model开源项目
本项目探索在单GPU上用一天时间预训练BERT语言模型的性能表现,旨在挑战当前以高算力为核心的趋势。通过调整预训练流程,展示了在严格计算限制下依然接近BERT性能,并分析不同改进对性能的影响。最新版本框架需要PyTorch 2.0,改善了数据预处理并提升了1-2% GLUE性能,提供了详细的代码运行和数据处理指南供研究和应用参考。
ByteTransformer - 为BERT类Transformer优化的高性能推理库
BERTByteTransformerGithubNVIDIA GPUTransformer开源项目高性能
ByteTransformer是一个为BERT类Transformer优化的高性能推理库,支持Python和C++ API,兼容固定长度和可变长度Transformer。通过对BERT例程中的QKV编码、软最大值、前馈网络、激活、层归一化和多头注意力机制进行优化,ByteTransformer为字节跳动的内部推理系统提升了性能。基准测试结果显示,相较于PyTorch、TensorFlow、FasterTransformer和DeepSpeed,ByteTransformer在A100 GPU上的推理速度更快。
GPTFast - Hugging Face Transformers模型推理加速工具
GPTFastGithubHugging Face开源项目推理加速量化静态键值缓存
GPTFast是一个为Hugging Face Transformers模型优化推理速度的开源Python库。它集成了多种加速技术,如静态键值缓存、int4量化和推测解码,可将模型推理速度提升7.6-9倍。GPTFast支持torch.compile、int8量化、GPTQ int4量化等优化方法,通过简单的API调用即可应用于各类Hugging Face模型。该项目持续更新,未来计划引入更多先进的加速技术。
bert-small - 轻量级BERT模型用于下游NLP任务优化
BERTGithubHuggingface人工智能开源项目模型知识蒸馏自然语言处理预训练模型
bert-small是Google BERT官方仓库转换的小型预训练模型,属于紧凑型BERT变体系列。该模型采用4层结构和512维隐藏层,为自然语言处理研究提供轻量级解决方案。在自然语言推理等任务中,bert-small展现出优秀的泛化能力,有助于推进NLI研究beyond简单启发式方法。作为下游任务优化的理想选择,bert-small为NLP领域带来新的研究与应用可能。
bert4torch - 基于PyTorch开发的自然语言处理工具
Githubbert4torch功能开源项目快速上手模型预训练权重
bert4torch是一个基于PyTorch开发的自然语言处理工具。支持包括BERT、RoBERTa、GPT在内的多种预训练模型,适用于广泛NLP任务。提供丰富示例及详尽文档,助力快速实施项目。特包高级功能如大模型推理,极致满足专业需求,是NLP领域的首选工具库。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号