Project Icon

mt5-base-parsinlu-opus-translation_fa_en

mT5-based波斯语至英语翻译工具

mT5-base-parsinlu-opus-translation_fa_en是一个开源的机器翻译模型,使用mT5技术将波斯语翻译为英语。通过借助Parsinlu数据集,该模型实现了高效精准的翻译。利用简单的Python代码即可进行调用,并以sacrebleu指标评估性能。适用于在cc-by-nc-sa-4.0许可下使用的开发者和研究人员,致力于提升跨语言交流能力。

opus-mt-de-en - 基于OPUS数据集的德英机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer模型开源项目德语到英语翻译机器翻译模型
opus-mt-de-en是一个基于OPUS数据集的德语到英语机器翻译模型。该模型采用transformer-align架构,并经过规范化和SentencePiece预处理。在多个新闻测试集上,模型表现优异,最高BLEU分数达43.7。模型支持多种测试集的翻译和评估,能够提供准确的德英翻译服务。该模型在新闻、科技等领域的翻译任务中表现尤为出色,适用于需要高质量德英翻译的各种应用场景。
opus-mt-en-da - 基于OPUS数据集的英丹双语机器翻译模型
BLEUGithubHuggingfaceopus-mt-en-da开源项目数据集机器翻译模型模型评估
opus-mt-en-da是一个英语到丹麦语的机器翻译模型,基于transformer-align架构设计。该模型利用OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型展现出优秀的翻译性能,BLEU分数达60.4,chr-F分数为0.745。模型提供原始权重下载,便于研究者进行深入探索和实际应用。
opus-mt-da-en - 基于Transformer架构的丹麦语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer-align丹麦语开源项目机器翻译模型英语
opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。
opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-sv-en - 基于OPUS数据集的瑞典语-英语神经机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型瑞典语英语
opus-mt-sv-en是一个瑞典语到英语的神经机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到64.5 BLEU分数和0.763 chr-F分数,显示出较高的翻译质量。项目开源了预训练权重、测试集翻译结果和评估数据,便于研究者复现和评估模型性能。
opus-mt-yo-en - 约鲁巴语和英语之间的开源翻译模型及其评估
GithubHuggingfaceopus-mt-yo-en开源项目数据集模型翻译预处理
该项目介绍了一个将约鲁巴语翻译为英语的开源模型。使用transformer-align架构并进行SentencePiece预处理。模型已在OPUS数据集上训练,并通过BLEU和chr-F评分评估其翻译能力,提供详细的权重下载和实施指南。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
opus-mt-tc-big-zls-en - 南斯拉夫语系至英语的机器翻译开源模型
GithubHuggingfaceMarian NMTOPUS-MT开源项目机器翻译模型神经网络自然语言处理
opus-mt-tc-big-zls-en是一个基于神经网络的机器翻译模型,用于南斯拉夫语系(zls)到英语(en)的翻译任务。作为OPUS-MT项目的组成部分,该模型采用Marian NMT框架开发,并已转换为PyTorch格式。模型支持包括保加利亚语、波斯尼亚语、克罗地亚语、马其顿语、斯洛文尼亚语和塞尔维亚语在内的多种南斯拉夫语言,可应用于相关语言的翻译工作。
opus-mt-en-grk - 英希翻译模型与性能评估指标
AI绘图GithubHuggingfaceSentencePiecetranslation希腊语开源项目模型正常化
项目提供基于transformer架构的英语到希腊语翻译模型,使用SentencePiece进行预处理,支持多语言目标,并提供测试集翻译、评估及模型权重下载。评估显示其在现代希腊语翻译中具有较高BLEU分数。相关资源含性能基准及原始代码链接。
opus-mt-tc-big-en-tr - OPUS-MT项目开发的英土双语神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT开源项目机器翻译模型神经网络模型英语到土耳其语
opus-mt-tc-big-en-tr是OPUS-MT项目开发的英语到土耳其语神经机器翻译模型。该模型基于Transformer架构,在多个数据集上表现出色,最高BLEU分数达42.3。模型支持通过Hugging Face Transformers库使用,为英土翻译提供了可靠的解决方案。OPUS-MT项目旨在为全球多种语言对开发开源的神经机器翻译模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号