Project Icon

TransformerPrograms

Transformer模型转Python程序的新型解释方法

TransformerPrograms项目提出了一种新方法,可将Transformer模型转换为易读的Python程序。该项目提供了训练和转换工具,并包含多个示例程序,涵盖从排序到命名实体识别等任务。这为解释Transformer模型提供了新视角,有助于研究者探索模型内部机制,推进AI可解释性研究。

AI Code Translator - 多语言代码智能转换平台 助力开发效率提升
AI工具人工智能代码翻译多语言支持开发工具编程语言
AI Code Translator是一个基于人工智能的在线代码转换平台,支持Python、JavaScript、Java等多种编程语言间的智能转换。用户输入源代码并选择目标语言后,系统可自动完成转换。该工具优化开发流程,提高编程效率,适用于专业开发者和编程学习者。平台还提供自然语言到代码的转换功能,方便初学者使用。
nucleotide-transformer - Transformer驱动的基因组语言及单核苷酸序列分割模型
DNA序列解析GithubNucleotide TransformersSegmentNTgenomics开源项目预训练模型
nucleotide-transformer项目提供了九种预训练基因组语言模型和两种SegmentNT分割模型。基于Transformer的基因组模型综合了3,200个人类基因组和850个不同物种的基因组数据,能够高精度预测分子表型。Agro NT模型专用于农作物基因组,在基因调控和表达预测上表现优异。这些模型可以实现对DNA序列基因组元素的单核苷酸分辨率分割。
inseq - 基于Pytorch的序列生成模型解释性分析工具
GithubInseqPytorch序列生成开源项目模型解释集成渐变
Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。
Transformers_And_LLM_Are_What_You_Dont_Need - 分析深度学习模型在时间序列预测中的表现与局限
GithubMambaTransformers开源项目时间序列预测深度学习线性模型
本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。
course - 学习如何将Transformers应用于各类自然语言处理任务
GithubHugging FaceTransformers免费开源开源项目翻译自然语言处理
此课程讲解如何将Transformers应用于自然语言处理及其他任务,并介绍Hugging Face生态系统的使用,包括Transformers、Datasets、Tokenizers和Accelerate工具,以及Hugging Face Hub。课程完全免费且开源,支持多语言翻译学习,旨在推广机器学习。对于翻译课程感兴趣的用户,可在GitHub上开issue并加入Discord讨论。
TransBTS - 使用Transformer实现多模态脑肿瘤医学图像分割
GithubTransBTSTransBTSV2Transformer多模态数据集开源项目脑肿瘤分割
TransBTS与TransBTSV2采用Transformer技术显著提升多模态脑肿瘤与医学图像体积分割的效率与准确性。项目包括详细的模型实现和相关文献,支持BraTS、LiTS、KiTS等医学图像数据集,并利用Python和Pytorch进行数据预处理、模型训练和测试,支持分布式训练。适用于需要高效精准医学图像分割解决方案的研究人员和工程师。
single-cell-transformer-papers - Transformer模型在单细胞组学分析中的应用概览
GithubTransformers单细胞组学基因表达开源项目细胞注释预训练模型
本项目汇总了单细胞组学数据分析中的Transformer模型,包括论文、代码、数据模态等关键信息。通过全面概述单细胞Transformer模型,展示了该领域的最新进展和发展趋势。项目内容持续更新,为研究人员提供了宝贵的参考资源。项目内容涵盖了各Transformer模型的核心要素,如数据模态、预训练数据集、模型架构和任务类型等。这种系统性的整理使研究人员能够快速了解和比较不同模型的特点,为单细胞组学研究提供了有力支持。
transformer_latent_diffusion - 基于 PyTorch 的 Transformer 潜在扩散文本生图模型
AI绘图GithubLatent DiffusionPyTorchTransformer图像生成开源项目
Transformer Latent Diffusion 是一个基于 PyTorch 的开源项目,实现了文本到图像的潜在扩散模型。该模型体积小、生成速度快、性能合理,可在单 GPU 上快速训练。项目代码简洁,依赖少,注重数据质量。它提供数据处理工具,支持自定义训练,并进行了多项性能优化。项目展示了 256 分辨率随机样本和 CLIP 插值等生成示例。
t5_paraphraser - 基于T5模型的智能问题重构生成器
GithubHuggingfaceT5开源项目数据科学文本生成模型模型训练深度学习
t5_paraphraser是一个基于T5预训练模型的文本复述工具,可以智能重构输入的问题或句子,生成多个语义相似但表述不同的版本。项目使用PyTorch和Transformers库实现核心功能,并提供详细的代码示例和输出结果。这对于文本变体生成、问答系统增强或语言模型训练的开发者而言是一个有价值的资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号