Project Icon

deberta-v3-base-prompt-injection-v2

DeBERTa-v3微调模型实现高精度提示注入检测

deberta-v3-base-prompt-injection-v2是一个基于DeBERTa-v3-base微调的模型,专注于检测和分类英语提示注入攻击。模型在后训练数据集上达到95.25%的准确率,可有效分类输入是否存在注入。该模型由Protect AI开发,利用多个公开数据集训练而成,旨在提升语言模型应用的安全性。需注意的是,模型不适用于越狱攻击检测和非英语提示处理。

deberta-v3-small - 微软开发的高效轻量级预训练语言模型 实现出色NLP性能
DeBERTaGithubHuggingface开源项目微调模型注意力机制自然语言处理预训练语言模型
DeBERTa-v3-small是微软开发的轻量级预训练语言模型,采用ELECTRA风格预训练和梯度解耦嵌入共享技术。该模型仅有44M参数,在SQuAD 2.0和MNLI等NLU任务上表现优异,接近或超越部分更大模型。DeBERTa-v3-small为追求效率与性能兼顾的NLP应用提供了新选择。
deberta-v2-xlarge-mnli - DeBERTa架构的大规模预训练语言模型用于自然语言推理
DeBERTaGithubHuggingface人工智能开源项目微软机器学习模型自然语言处理
deberta-v2-xlarge-mnli是基于DeBERTa V2架构的大型预训练语言模型,经过MNLI任务微调。模型包含24层,1536隐藏单元,共9亿参数。它采用解耦注意力和增强掩码解码器,在GLUE等自然语言理解基准测试中表现优异,为相关研究与应用提供了新的可能。
deberta-large - DeBERTa模型利用解耦注意力机制提升自然语言理解能力
DeBERTaGithubHuggingface开源项目微软模型注意力机制自然语言处理语言模型
DeBERTa是微软开发的预训练语言模型,基于BERT和RoBERTa进行改进。该模型引入解耦注意力和增强型掩码解码器,在80GB训练数据上优化后,在多数自然语言理解任务中超越BERT和RoBERTa。DeBERTa在SQuAD和GLUE等基准测试中表现出色,其中DeBERTa-V2-XXLarge版本在多项任务上达到顶尖水平。研究者可通过Hugging Face的transformers库使用和微调DeBERTa模型。
deberta-large-mnli - 基于DeBERTa架构的MNLI微调大型语言模型
BERTDeBERTaGithubHuggingface开源项目模型模型性能注意力机制自然语言处理
DeBERTa-large-mnli是一个针对MNLI任务微调的大型语言模型,基于DeBERTa架构开发。该模型采用解耦注意力机制和增强型掩码解码器,在多数自然语言理解任务中表现优于BERT和RoBERTa。在SQuAD和GLUE等基准测试中,DeBERTa-large-mnli展现出优异性能。这个模型适用于各种自然语言理解应用,可为NLP研究提供有力支持。
deberta-v3-xsmall - 轻量级高性能自然语言处理模型
DeBERTaGithubHuggingface开源项目微软机器学习模型自然语言处理预训练模型
DeBERTa-v3-xsmall是一个参数量仅为2200万的轻量级自然语言处理模型。该模型采用ELECTRA风格预训练和梯度解耦嵌入共享技术,在SQuAD 2.0和MNLI等任务上表现出色。它在保持高效性的同时,显著提升了下游任务性能,适用于资源受限的自然语言理解应用场景。
promptbase - 优化基础AI模型性能的开源资源库
AI模型GPT-4GithubMedpromptPromptbase开源项目提示工程
promptbase是一个持续更新的开源资源库,致力于优化GPT-4等基础AI模型的性能。该项目集成了Medprompt方法的实例代码,并将相关提示技术拓展至非医疗领域。通过动态少样本选择、自生成思维链和选择洗牌集成等策略,promptbase显著提升了模型在多项基准测试中的表现。未来,该项目将提供更多关于提示工程科学流程的案例分析和专业访谈。
VulBERTa-MLP-D2A - 基于深度学习的源代码漏洞检测模型
GithubHuggingfaceVulBERTa开源项目文本分类模型深度学习源代码预训练漏洞检测
VulBERTa-MLP-D2A是一个基于RoBERTa架构的深度学习模型,用于检测源代码中的安全漏洞。该模型通过对开源C/C++项目代码进行预训练,学习代码语法和语义的深层表示。在多个数据集的评估中,VulBERTa-MLP-D2A在漏洞检测任务上表现出色,达到了领先水平。模型设计简洁,训练成本较低,为代码安全分析提供了高效可靠的解决方案。
VulBERTa-MLP-Devign - 基于深度学习的源代码安全漏洞检测模型
GithubHuggingfaceVulBERTa代码漏洞检测开源项目模型深度学习自然语言处理预训练模型
VulBERTa-MLP-Devign是一种先进的深度学习模型,专门用于检测源代码中的安全漏洞。该模型采用RoBERTa架构和自定义分词流程,通过预训练真实的C/C++项目代码来学习深层次的语法和语义知识表示。在多个数据集的评估中,VulBERTa-MLP-Devign在二进制和多类漏洞检测任务上展现出卓越性能。凭借其简洁的设计理念、较小的训练数据需求和精简的模型参数,该模型为代码安全分析领域提供了一个高效而强大的工具。
deberta-small-long-nli - DeBERTa-v3微调长文本自然语言推理模型
DeBERTa-v3-smallGithubHuggingface多任务学习开源项目文本分类模型自然语言推理零样本分类
这是一个基于DeBERTa-v3-small在250多个NLP任务上微调的长文本自然语言推理模型。支持1680个token的上下文长度,在多项NLI基准测试中表现优异。可用于零样本分类、自然语言推理及下游任务微调。在逻辑推理、概率推理和长文本NLI等任务上性能出色,是一个功能强大的NLP工具。
DeBERTa-v3-FaithAug - 基于DeBERTa的知识对话系统可靠性评估模型
DeBERTa-v3GithubHuggingface开源项目数据集模型模型训练知识对话自然语言推理
DeBERTa-v3-FaithAug是一个基于DeBERTa-v3架构的自然语言推理模型,通过ANLI数据增强方式进行微调,用于知识对话系统的可靠性评估。模型在原有DeBERTa-v3-large-mnli-fever-anli-ling-wanli基础上优化,提供开源代码和评分接口。该版本相比论文中的原始模型具有更优的平均性能表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号