Project Icon

xlm-roberta-base-language-detection-onnx

基于XLM-RoBERTa的多语言文本识别系统

这是一个将xlm-roberta-base转换为ONNX格式的语言检测模型,支持阿拉伯语、中文、英语等20种语言识别。模型通过序列分类技术实现语言检测,并结合Optimum库确保高效运行,适合多语言文本分析场景。

distilroberta-base-rejection-v1 - DistilRoBERTa模型用于检测LLM输出拒绝响应 准确率98.87%
GithubHuggingfaceLLMProtectAIdistilroberta-base开源项目拒绝检测文本分类模型
这是一个基于DistilRoBERTa的微调模型,用于检测大型语言模型(LLM)输出中的拒绝响应。模型将输入分为正常输出和拒绝检测两类,评估准确率达98.87%。采用Apache 2.0许可证,支持Transformers和ONNX运行时,易于集成。适用于内容审核和安全防护,可识别LLM对不当内容的拒绝响应。
lilt-xlm-roberta-base - 融合LiLT和XLM-RoBERTa的多语言文档布局分析模型
GithubHuggingfaceLiLTXLM-RoBERTa多语言模型布局转换器开源项目文档理解模型
lilt-xlm-roberta-base 是一个结合Language-Independent Layout Transformer (LiLT)和XLM-RoBERTa的多语言文档布局理解模型。该模型支持100种语言的文档分析,能同时处理文本内容和布局信息。这一特性使其在多语言文档分类、信息提取和版面分析等任务中具有广泛应用潜力。
pretrained-xlmR-food - XLM-RoBERTa多语言食品文本分类模型
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估神经网络
pretrained-xlmR-food是一个基于XLM-RoBERTa的多语言食品文本分类模型。该模型可处理多种语言的食品描述、评论和标签,适用于食品安全分析、菜单分类等场景。项目提供了模型使用指南和性能评估结果,便于研究人员和开发者快速应用。
xlm-roberta-large-wnut2017 - XLM-RoBERTa模型在多语言命名实体识别中的应用
GithubHuggingfaceNERTransformerXLM-RoBERTa开源项目模型模型微调自然语言处理
xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。
xlm-roberta-longformer-base-4096 - 支持超长序列处理的多语言Transformer模型
GithubHuggingfaceWikiText-103XLM-R Longformer低资源语言开源项目模型长序列处理问答任务
该项目结合XLM-R与Longformer模型,提升了对多达4096个标记的处理能力,以提高低资源语言的处理效果。模型在WikiText-103语料库上进行预训练,适用于多语言问答任务。推荐使用NVIDIA Apex和大容量GPU以确保模型性能和效率。项目由Peltarion完成,提供相关代码和训练脚本供开发者参考。
roberta-large-mnli - RoBERTa大型模型微调的零样本分类模型
GithubHuggingfaceRoBERTa开源项目文本分类机器学习模型自然语言处理语言模型
roberta-large-mnli是基于RoBERTa大型模型在MNLI语料库上微调的自然语言推理模型。该模型在零样本分类任务中表现优异,适用于句对分类和序列分类。它采用transformer架构,通过掩码语言建模进行预训练,在GLUE和XNLI基准测试中成绩卓越。然而,用户需注意模型可能存在偏见,不适合生成事实性内容或用于可能造成负面影响的场景。
XLM-Roberta-Large-Vit-B-32 - 多语言CLIP模型的高性能文本编码器
CLIPGithubHuggingfaceXLM-Roberta图像编码器多语言开源项目文本编码器模型
XLM-Roberta-Large-Vit-B-32是一个多语言CLIP模型的文本编码器,支持超过50种语言。该模型与ViT-B-32图像编码器配合,可实现跨语言的图像-文本匹配。在MS-COCO数据集的多语言文本-图像检索任务中,R@10指标表现优异。模型可轻松提取多语言文本嵌入,为跨语言视觉-语言任务提供支持。使用简单,适用于多语言环境下的图像搜索、内容理解等应用场景。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
distilroberta-base-offensive-hateful-speech-text-multiclassification - 基于DistilRoBERTa的多分类攻击性和仇恨言论检测模型
GithubHuggingfacedistilroberta-base仇恨言论检测多分类开源项目文本分类模型预训练模型
这是一个基于DistilRoBERTa-base的预训练模型,专门用于多分类攻击性和仇恨言论检测。该模型在原创数据集上进行微调,准确率达到94.50%。项目提供了Hugging Face上的数据集和演示空间,以及GitHub上的训练notebook。这为研究人员和开发者提供了一个高效工具,用于识别和分类在线有害内容。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号