Project Icon

ao

优化PyTorch工作流,实现高性能和内存占用减少

torchao是一个用于PyTorch工作流的高性能库,能够创建并集成自定义数据类型和优化技术,实现推理速度提升至2倍,显存减少65%。无需大幅修改代码,保持准确度。支持量化、稀疏化及浮点数优化,适用于HuggingFace等模型。用户可以轻松优化模型,提高计算效率。支持int8、int4和float8等多种数据类型,兼容torch.compile()和FSDP。

quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
auto-round - 针对大语言模型的高效量化算法
AutoRoundGithubLLM推理低位推理开源项目权重量化量化算法
AutoRound是一种针对大语言模型(LLM)的高效量化算法。通过符号梯度下降优化权重舍入和范围,仅需200步迭代即可达到业界领先水平,且不增加推理开销。该算法支持OPT、BLOOM、GPT-J等多种模型,提供混合精度量化、激活量化等实验功能,并兼容Intel Gaudi2硬件。AutoRound提供简洁的Python接口,方便用户进行模型量化和推理。
fairscale - 强化PyTorch大规模深度学习训练的开源库
FairScaleGithubPyTorch分布式训练大规模模型开源项目高性能计算
FairScale是一个开源的PyTorch扩展库,旨在提升大规模深度学习模型的训练效率。它不仅增强了PyTorch的基础功能,还引入了先进的模型扩展技术。通过提供模块化组件和简洁的API,FairScale使研究人员能够更轻松地实现分布式训练,有效应对资源受限情况下的模型扩展挑战。该库在设计时特别强调了易用性、模块化和性能优化,并支持全面分片数据并行(FSDP)等多种先进扩展技术。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
torchtitan - PyTorch原生大规模语言模型训练框架
GithubLLM训练Llama模型PyTorchtorchtitan分布式训练开源项目
torchtitan是基于PyTorch的大规模语言模型训练框架,展示了最新分布式训练功能。它采用简洁模块化设计,支持多种并行化技术,包括数据并行、张量并行和管道并行。框架还提供分布式检查点和Float8等先进特性,为Llama 3和Llama 2等模型预训练提供高效方案。torchtitan旨在展示PyTorch在大规模语言模型训练中的潜力。
torchscale - 高效扩展Transformer模型的PyTorch开源库
DeepNetGithubLongNetPyTorchTorchScaleTransformers开源项目
TorchScale是一个PyTorch开源库,旨在帮助研究人员和开发者有效扩展Transformer模型。该库专注于开发基础模型和AGI架构,提升建模的通用性、能力以及训练的稳定性和效率。其关键功能包括DeepNet的稳定性、Foundation Transformers的通用性、可延展性的Transformer和X-MoE的效率。最新更新涉及LongNet和LongViT等创新架构,支持多种应用,如语言、视觉和多模态任务,用户仅需几行代码即可快速创建和调整模型。
ignite - PyTorch工具库,专为简化神经网络训练与评估设计
GithubPyTorch-Ignite事件和处理器开源项目神经网络训练评估
Ignite是一个为PyTorch设计的库,帮助用户以灵活和透明的方式训练及评估神经网络。这个库通过简化代码,提供了控制简单且强大的API,支持度量和实验管理等功能。其简单的引擎和事件系统,以及开箱即用的度量工具,使得模型评估变得轻松。它还包含用于训练管理、保存工作成果和记录关键参数的内置处理器。此外,Ignite还支持自定义事件,满足高级用户需求。
torch-scan - PyTorch模型分析和性能评估工具
GithubPyTorch开源项目性能评估模型分析深度学习神经网络
torch-scan是一个专门用于PyTorch模型分析的开源工具。它提供详细的模型结构信息,包括参数数量、FLOPs、MACs和内存使用等指标。支持分析嵌套复杂架构,可估算卷积网络感受野。该工具帮助开发者深入了解和优化PyTorch模型,适用于模型分析和性能评估。
flash-attention - 高效注意力机制加速深度学习模型训练
CUDAFlashAttentionGPU加速GithubPyTorch开源项目注意力机制
FlashAttention是一种高效的注意力机制实现,通过IO感知算法和内存优化提升计算速度并降低内存消耗。它支持NVIDIA和AMD GPU,适用于多种深度学习框架。最新的FlashAttention-3版本针对H100 GPU进行了优化。该项目提供Python接口,可集成到现有模型中,有助于加速大规模深度学习模型的训练过程。
llm-awq - 激活感知权重量化技术实现大语言模型高效压缩与加速
AWQGithubLLM开源项目模型量化视觉语言模型边缘设备
AWQ是一种高效的大语言模型低比特权重量化技术,支持INT3/4量化,适用于指令微调和多模态模型。它提供预计算模型库、内存高效的4位线性层和快速推理CUDA内核。AWQ使TinyChat可在边缘设备上实现大模型高效本地推理。该技术已被Google、Amazon等采用,并获MLSys 2024最佳论文奖。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号