Project Icon

distilbert-base-fallacy-classification

适用于识别14种逻辑谬误的文本分类模型

模型基于Logical Fallacy Dataset微调,支持识别14种逻辑谬误,如人身攻击、诉诸大众、情感诉求、以及循环论证等。通过transformers库的pipeline,简化文本分类过程,提升文本分析的准确率,助力识别常见推理谬误。

pytextclassifier - PyTextClassifier:支持多种文本分类和聚类算法的高性能工具库
GithubPyTextClassifier开源工具包开源项目文本分类聚类算法自适应文本分析
PyTextClassifier是一款高性能的Python工具库,提供多种文本分类和聚类算法,支持二分类、多分类、多标签分类和Kmeans聚类。适用于情感分析和文本风险分类,设计简明易用,算法高效清晰。支持句子和文档级的文本任务,兼容英文和中文文本。包含FastText、TextCNN、TextRNN和BERT等深度学习模型,适合各类生产环境。
llms - 大型语言模型的原理与实践应用全面解析
BERTGPTGithubTransformer开源项目自然语言处理语言模型
本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。
chatgpt-failures - 深入解析ChatGPT和其他AI模型的失误案例,提供研究参考
AI故障ChatGPTGithubNew Bing人工智能开源项目机器学习
本页面提供ChatGPT及其他类似AI模型的失败案例分析,涵盖新Bing和ChatGPT在不同场景下的错误表现,如数学问题、常识错误、艺术创作失败和偏见示例。这些资料对其他模型的比较研究和创建测试、训练数据具有重要意义。
CritiqueLLM - 大型语言模型输出评估的智能批评生成框架
CritiqueLLMGithub人工智能大语言模型开源项目自然语言处理评估
CritiqueLLM是一个用于评估大型语言模型输出的批评生成框架。该项目提供了数据收集、参考评分、无参考评分和配对比较等功能。通过支持逐点评分和成对比较,CritiqueLLM能生成详细的批评信息,为研究人员和开发者提供了全面的评估工具,有助于分析和改进大型语言模型的表现。
LM-reasoning - 大语言模型推理相关的论文和资源
EvaluationGithubLarge Language ModelsReasoningSurveyTechnique开源项目
本页面收录了大语言模型推理相关的论文和资源,涵盖技术方法如完全监督微调、提示与上下文学习、混合方法,以及详细的评估和分析。用户可以浏览各类调查报告和技术论文,了解如何提升大模型的推理能力,并参考领域专家的讨论提供的重要见解。
prodigy-openai-recipes - 结合OpenAI大语言模型与本地Prodigy实例,通过零次和少次学习技术,高效构建高质量数据集的方法
GithubNEROpenAIProdigyspaCytextcat开源项目
该项目展示了如何结合OpenAI大语言模型与本地Prodigy实例,通过零次和少次学习技术,高效构建高质量数据集。用户可以使用该方法进行命名实体识别和文本分类等任务,手动校正模型预测结果以提高数据准确性。项目提供详细的设置指南,帮助用户在本地安装和运行必要的软件,并配置API密钥。通过高效的数据注解流程和灵活的模板设置,用户能够快速获得金标准数据,并训练符合特定需求的监督模型。
babilong - BABILong基准测试长文本处理能力 评估大语言模型极限
BABILongGithub开源项目推理能力数据集语言模型评估长文本处理
BABILong是一个用于评估自然语言处理模型长文本处理能力的基准测试。它将bAbI数据集的任务句子隐藏在PG19背景文本中,生成长达数百万标记的测试样本。该基准包含20个推理任务,涉及事实链接、归纳、演绎和计数等多个方面。BABILong为评估和改进大语言模型的长文本处理能力提供了有效工具,同时也对现有长文本模型提出了挑战。
pretraining-with-human-feedback - 基于人类偏好预训练的语言模型代码库
GithubHugging Facetoxicity人类偏好多任务开源项目预训练
该项目为根据人类偏好预训练语言模型提供了一套基于Hugging Face Transformers和wandb的工具。项目实现了五种预训练目标,通过对训练数据注释并使用这些目标函数提升模型性能,包括毒性检测和隐私信息识别等任务。项目还提供详细的配置文件和评估方式指导。
fact-checker - 利用提示链进行事实核查的演示
GithubLLMassumptionsfact checkingprompt chainingverification开源项目
该项目展示了如何通过提示链实现事实核查。LLM生成初步答案并验证其中的假设,最终提供包含新信息的答案。文档中包含运行指南和示例,帮助用户掌握该方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号