Project Icon

time-series-transformers-review

时序数据建模中的Transformers技术综述

本项目专业整理了Transformers在时序数据建模中的资源,涵盖论文、代码和数据,全面总结其最新进展。内容持续更新,开放问题提交和拉取请求,覆盖时序预测、不规则时序建模、异常检测和分类等领域,适合学术研究及实际应用。

data-augmentation-review - 全面数据增强技术助力机器学习模型优化
GitHubGithubPython库开源项目数据增强机器学习计算机视觉
该项目汇集了多领域数据增强资源,包括计算机视觉、自然语言处理、音频和时间序列分析。内容涵盖GitHub仓库、开源库、学术论文等,详细介绍了图像变换、文本生成、音频处理等增强技术。此外,还收录了自动增强和特定领域增强方法,为机器学习研究人员和实践者提供了全面的数据增强参考。
Time-series-prediction - 多功能的TensorFlow时间序列预测平台
GithubTFTSTensorFlow开源项目时间序列深度学习预测
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
transferlearning - 最新迁移学习综述、研究和教程资源
GithubTransfer Learning开源项目机器学习负迁移领域泛化领域自适应
探索迁移学习的最新论文、理论综述、研究领域等。页面提供丰富教程和代码库,助力你从基础到高级应用的学习。适合各级读者深入理解迁移学习的关键技术及前沿动态。
audio-transformers-course - Transformers在音频和语音处理中的应用与实践
Audio Transformers CourseGithubHugging Face多语言开源开源项目机器学习
audio-transformers-course是一个开源课程项目,聚焦于Transformers模型在音频和语音处理领域的应用。课程提供多语言版本,内容包括详细教程、代码示例和Jupyter notebooks,适合开发者和研究人员学习音频Transformers技术。项目支持社区参与翻译,致力于推广音频处理的前沿知识。
modeltime - R语言时间序列预测框架 整合机器学习与传统方法
GithubR语言modeltime工作流开源项目时间序列预测机器学习
modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
MetaTransformer - 统一12种模态的多模态学习框架
GithubMeta-Transformer人工智能多模态学习开源项目深度学习计算机视觉
Meta-Transformer是一个创新的多模态学习框架,可处理12种不同模态的数据,包括自然语言、图像、点云和音频等。该框架采用共享编码器架构和数据到序列转换方法,支持分类、检测和分割等多种任务。项目提供开源预训练模型和代码实现,为多模态AI研究提供了有力支持。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
transformers_tasks - 多种集成NLP任务的高效开源工具
GithubNLPhuggingface transformers信息抽取开源项目强化学习文本匹配
transformers_tasks提供了多种NLP任务的实现,基于Huggingface transformers库,用户可以便捷加载及训练模型,并根据自己数据集进行微调。包括文本匹配、信息抽取、Prompt任务等多种功能,适用于Python 3.6+和多种操作系统,满足不同NLP应用需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号