Project Icon

segmentation_models.pytorch

基于PyTorch的神经网络图像分割库

segmentation_models.pytorch 是一个基于 PyTorch 的图像分割库,提供9种分割模型架构和124种编码器。该库 API 简洁,支持预训练权重,并包含常用评估指标和损失函数。它适用于研究和实际应用中的各种图像分割任务,是图像分割领域的实用工具。

tokenizer_titok_s128_imagenet - 基于PytorchModelHubMixin的开源图像标记化模型
GithubHugging FaceHuggingfacePytorchModelHubMixin图像标记化开源项目机器学习模型模型深度学习
tokenizer_titok_s128_imagenet是一个开源的图像标记化模型,基于Apache-2.0许可。该项目利用PytorchModelHubMixin技术与Hugging Face模型库集成,专注于图像tokenization。它支持PyTorch模型hub功能,为图像处理研究和开发提供了实用工具。项目源码托管于GitHub的1d-tokenizer仓库。
segment-anything-video - MetaSeg 开源图像和视频分割框架
GithubMetaSegSegment Anything图像分割开源项目深度学习计算机视觉
MetaSeg是Segment Anything模型的封装版本,提供自动和手动图像视频分割功能。该项目支持多种预训练模型,可与SAHI和FalAI等工具集成,实现物体分割。MetaSeg支持pip安装,提供丰富的API接口,适用于图像分析和处理任务。
torch-dreams - 神经网络可视化与解释性增强工具
GithubTorch-Dreams可解释性图像生成开源项目特征可视化神经网络
Torch-Dreams是一个Python库,专注于神经网络可视化和增强模型可解释性。它提供特征可视化、通道激活和多模型同步可视化等功能,支持批量处理和自定义变换。这个工具适合研究人员分析深度学习模型内部机制,也可用于生成艺术创作。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
SLiMe - 基于Stable Diffusion的单样本图像分割方法
GithubPyTorchSLiMeStable Diffusion图像分割开源项目深度学习
SLiMe是一种基于Stable Diffusion的单样本图像分割方法,通过单个训练样本实现准确分割。项目提供PyTorch实现,包含训练、测试和数据处理指南。SLiMe在PASCAL-Part和CelebAMask-HQ数据集上表现优异,为图像分割研究提供新思路。项目开源代码,支持自定义数据集训练和测试。SLiMe采用图像分块处理技术,提高分割精度。研究者可基于此探索更多单样本学习应用场景。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
torchgeo - 优化地理空间数据处理的机器学习与遥感工具
GithubPyTorchTorchGeo地理空间数据开源项目机器学习遥感
TorchGeo 是一个基于 PyTorch 的地理空间数据处理库,提供丰富的数据集、采样器、变换和预训练模型,旨在帮助机器学习和遥感专家更高效地处理和探索地理空间数据。该库支持多光谱传感器的预训练模型,并与 PyTorch 数据加载器完全兼容,易于集成到现有的训练工作流中。其全面的文档包括 API 使用指南、教程和示范,非常适合开发者和研究人员使用。
fbrs_interactive_segmentation - 基于反向传播细化的交互式图像分割算法
GithubPyTorchf-BRS交互式分割开源项目深度学习计算机视觉
f-BRS是一种基于反向传播细化的交互式图像分割算法。该项目提供了PyTorch实现,支持ResNet和HRNet等多种骨干网络。算法通过用户点击交互实现精确对象分割,在GrabCut、Berkeley等多个数据集上进行了评估。项目还提供了图形界面演示。f-BRS在分割精度和速度方面均有显著提升,为计算机视觉领域提供了新的解决方案。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
Pytorch-NLU - 轻量级NLP工具包 支持文本分类和序列标注
GithubPytorch-NLU序列标注开源项目文本分类自然语言处理预训练模型
Pytorch-NLU是一个轻量级自然语言处理工具包,专注于文本分类、序列标注和文本摘要任务。该工具包支持BERT、ERNIE等多种预训练模型,提供多种损失函数,具有依赖少、代码简洁、注释详细、配置灵活等特点。Pytorch-NLU包含丰富的数据集,使用方式简单,可快速应用于实际NLP项目中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号