Project Icon

Data-Science-Interview-Resources

数据科学面试全面准备资源集锦

该项目汇集了数据科学面试的全面准备资源,覆盖简历制作、技能提升和面试技巧等方面。内容包括概率统计、SQL、数据处理、机器学习算法等关键知识点,并提供大量实用链接和视频资料。项目旨在帮助求职者系统备考,适合不同经验水平的数据科学从业者参考使用。

HitCount Star this repository

Data-Science-Interview-Resources

Update : Drawing from extensive experience in interviews over the past few years, I recently decided to launch a dedicated channel to help individuals excel in Data Science. My goal is to create a comprehensive resource for anyone looking to revisit the basics before an upcoming interview or master the skills and in-depth knowledge required for both succeeding in Data Science interviews and applying Data Science in practice. This channel aims to provide a clear understanding of various techniques used on a day-to-day basis, covering a vast range of Machine Learning topics. Feel free to explore it here :

First of all, thanks for visiting this repo, congratulations on making a great career choice, I aim to help you land an amazing Data Science job that you have been dreaming for, by sharing my experience, interviewing heavily at both large product-based companies and fast-growing startups, hope you find it useful.

With an increase in demand for so many Data Scientists, it's really hard to successfully get screened and accepted for an interview. In this repo, I include everything from getting successfully screened and rocking that interview to land that amazing position, make sure to nail it with the following resources.

Every Resource I list here is personally verified by me and most of them I have used personally, which have helped me a lot.

Word of Caution: Data Science/Machine Learning has a very big domain and there are a lot of things to learn. This by no means is an exhaustive list and is just for helping you out if you are struggling to find some good resources to start your preparation. However, I try to cover and update this frequently and my goal is to cover and unify everything into one resource that you can use to rock those interviews!

Please leave a star if you appreciate the effort.

Note: For contribution, refer Contribution.md

How to get an interview ?

  • First and foremost, develop the necessary skills and be sound with the fundamentals, these are some of the horizons you should be extremely comfortable with -

    • Business Understanding(this is extremely critical across all seniority levels, but specifically for people with more than 3 years of experience)
    • SQL and Databases(very crucial)
    • Programming Skills(preferably in Python, if you know Scala, extra brownie points for some specific roles)
    • Mathematics(Probability, Statistics, Linear Algebra and Calculus) - https://medium.com/@rbhatia46/essential-probability-statistics-concepts-before-data-science-bb787b7a5aef
    • Machine Learning(this includes Deep Learning) and Model building
    • Data Structures and Algorithms(must and mandatory for top product based companies like FAANG)
    • Domain Understanding(Optional for most openings, though very critical for some roles based on company's requirement)
    • Literature Review(must for Research based roles) : Being able to read and understand a new research paper is one of the most essential and demanding skills needed in the industry today, as the culture of Research and Development, and innovation grows across most good organizations.
    • Communication Skills - Being able to explain the analysis and results to business stakeholders and executives is becoming a really important skill for Data Scientists these days
    • Some Engineering knowledge(Not mandatory, but good to have) - Being able to develop a RESTful API, writing clean and elegant code, Object Oriented programming are some of the things you can focus on for some extra brownie points.
    • Big data knowledge(not mandatory for most openings, but good to have) - Spark, Hive, Hadoop, Sqoop.
  • Build a personal Brand

    • Develop a good GitHub/portfolio of use-cases you have solved, always strive for solving end-to-end use cases, which demonstrate the entire Data Science lifecycle, from business understanding to model deployment.
    • Write blogs, start a YouTube channel if you enjoy teaching, write a book.
    • Work on a digital, easy-to-open, easy-to-read, clean, concise and easily customizable Resume/CV, always include your demo links and source code of every use-case you have solved.
    • Participate in Kaggle competitions, build a good Kaggle profile and send them to potential employers for increasing the chances of getting an interview call real-quick.
  • Develop good connections, through LinkedIn, by attending conferences, and doing everything you can, it's very important to land referrals and get yourself started with the interview process through good connections. Connect regularly with Data Scientists working at top product-based organizations, fast-growing startups, build a network, slowly and steadily, it's very important.`

Some Tips on Resume/CV:

  • Describe past roles and an impact you made in a quantifiable way, be concise and I repeat, quantify the impact, rather than talking with facts that have no relevance. According to Google Recruiters, use the XYZ formula - Accomplished [X] as measured by [Y], by doing [Z]

  • Keep it short, ideally not more than 2 pages, as you might know, an average recruiter scans your resume only for 6 seconds, and makes a decision based on that.

  • If you are a fresher and don't have experience, try to solve end-to-end use-cases and mention them in your CV, preferably with the demo link(makes it easy for the recruiter) and the link to source code on GitHub.

  • Avoid too much technical jargon, and this goes without saying, do not mention anything you are not confident about, this might become a major bottleneck during your interview.

  • Some helpful links :


Probability, Statistics and Linear Algebra


SQL and Data Acquisition

This is probably the entry point of your Data Science project, SQL is one of the most important skills for any Data Scientist.


Data Preparation and Visualization


Classic Machine Learning Algorithms

1. Logistic Regression

2. Linear Regression

3. Tree Based/Ensemble Algorithms

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号