Project Icon

BARS

推荐系统开放基准测试项目

BARS项目致力于解决推荐系统领域缺乏统一基准测试的问题。它通过开放式基准测试提高研究可重复性和结果一致性。目前涵盖CTR预测和候选项匹配任务,未来将扩展到列表重排序和多任务推荐领域。该项目鼓励学术界和业界参与,共同推动推荐系统研究的进步。

daisyRec - 开源推荐系统评估和基准测试框架
GithubPython工具包协同过滤基准测试开源项目推荐系统深度学习
daisyRec是一个支持多维度公平比较的Top-N推荐任务基准测试框架。该开源工具整合了传统和深度学习推荐算法,支持CUDA加速和多个公开数据集。通过提供GUI命令生成器和严格的评估标准,daisyRec致力于推动推荐系统研究的可复现性和公平比较。
RecSysDatasets - 推荐系统公开数据集汇总及处理工具
GithubRecBole开源项目推荐系统数据处理数据集模型评估
RecSysDatasets是一个汇总公开推荐系统数据集的开源项目。该项目收集了电商、广告、电影等多个领域的数据集,并提供将数据集转换为统一格式的工具。这有助于研究人员更便捷地获取和使用各类推荐系统数据集,为算法开发和评估提供支持。项目与RecBole推荐系统库集成,便于进行算法测试。
RecSys_Course_AT_PoliMi - 推荐系统算法库与评估框架
Github协同过滤开源项目推荐系统机器学习相似度计算矩阵分解
该项目提供多种推荐系统算法实现,包括协同过滤KNN、矩阵分解和图模型等。框架集成了评估模块、数据处理功能,便于快速构建和测试推荐系统。采用Python和Cython开发,注重性能优化,适合推荐系统的教学与研究使用。
RePlay - 全周期推荐系统开发与评估框架
GithubRePlay开源项目推荐系统数据预处理模型评估超参数优化
RePlay是一个覆盖推荐系统全生命周期的开发评估框架。它集成了数据预处理、模型构建、参数优化、性能评估和模型集成等功能。该框架支持CPU、GPU等多种硬件,并可与PySpark结合实现分布式计算。RePlay能帮助开发者顺利将推荐系统从离线实验转到在线生产环境,提升系统的可扩展性和适应性。
TabularBenchmarks - 机器学习算法在表格数据上的性能评估基准
Github开源项目性能评估数据集机器学习算法表格数据
TabularBenchmarks是一个开源项目,提供多种数据集和评估脚本,用于测试机器学习算法在表格数据上的性能。项目将数据集存放在input文件夹,算法实现则位于scripts文件夹。这些资源使研究人员能够客观比较不同算法处理表格数据的效果,有助于为特定任务选择合适的算法。
Recommender_System - 推荐系统全面指南:从理论基础到工业实践
GithubGolangTensorFlow召回开源项目排序推荐系统
本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。
BIG-bench - 评估大型语言模型能力的开放基准
BIG-benchGithub任务创建基准测试开源项目模型评估语言模型
BIG-bench是一个开放的基准测试项目,致力于评估大型语言模型的能力并预测其未来发展。该项目包含200多个多样化任务,涉及算术、推理等多个领域。研究人员可通过JSON或编程方式贡献新任务,并利用公开模型进行评估。BIG-bench Lite作为24个精选任务的子集,提供了高效的模型性能评估方法。这一平台为深入研究语言模型能力提供了宝贵资源。
benchmarks - 主流机器学习库全面性能基准测试
CatBoostGPU加速Github基准测试开源项目性能比较机器学习
Benchmarks是GitHub上的开源项目,致力于多个主流机器学习库的性能对比。该项目涵盖CatBoost、XGBoost、LightGBM和H2O等库,对比范围包括二元分类、训练速度、模型评估、排序任务和SHAP值计算。此外还提供CPU与GPU性能对比和Kaggle竞赛数据集上的质量评估。这些全面的基准测试为机器学习从业者提供了客观的性能参考数据。
metarank - 实时个性化搜索和推荐服务,优化CTR和用户体验
GithubMetarank个性化开源开源项目排序服务推荐系统
Metarank是一个开源排名服务,帮助构建个性化的语义/神经搜索和推荐系统。通过整合点击和购买等客户信号,该服务可以优化搜索结果和推荐内容,实现最大化CTR。其快速性能支持大规模结果集的重新排序,并提供开箱即用的排名信号计算,节省开发时间。与多种流处理系统集成,Metarank能处理大量RPS,支持横向扩展。另外,用户可以使用LLM,在搜索查询中理解其真实含义,提供更智能的搜索解决方案。
BasicTS - 公平且标准的时间序列预测基准和工具包
BasicTSGithub基准测试工具包开源项目时间序列预测深度学习
BasicTS是一个开源的时间序列预测基准和工具包,支持空间-时间预测和长时间序列预测等任务。它提供统一标准的评估流程,实现对主流深度学习模型的公平对比。BasicTS还提供易用的接口,便于设计和评估新模型。该项目内置多个数据集和基线模型,支持多种计算设备,并有完善的日志系统。BasicTS致力于推动时间序列预测研究的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号