Project Icon

redis-py

Redis官方Python客户端库实现高效数据存储与检索

redis-py是Redis官方Python客户端库,支持Redis 5.0至7.2版本。该库提供简洁API,实现连接池、管道操作和发布订阅等功能。开发者可通过redis-py在Python应用中与Redis交互,实现高效数据存储和检索。支持RESP3协议,可选用hiredis加速解析,适用于多种Redis使用场景。该库为开发者提供了灵活且可靠的Redis操作工具。

redis-py

The Python interface to the Redis key-value store.

CI docs MIT licensed pypi pre-release codecov

Installation | Usage | Advanced Topics | Contributing


**Note: ** redis-py 5.0 will be the last version of redis-py to support Python 3.7, as it has reached end of life. redis-py 5.1 will support Python 3.8+.


How do I Redis?

Learn for free at Redis University

Try the Redis Cloud

Dive in developer tutorials

Join the Redis community

Work at Redis

Installation

Start a redis via docker:

docker run -p 6379:6379 -it redis/redis-stack:latest

To install redis-py, simply:

$ pip install redis

For faster performance, install redis with hiredis support, this provides a compiled response parser, and for most cases requires zero code changes. By default, if hiredis >= 1.0 is available, redis-py will attempt to use it for response parsing.

$ pip install "redis[hiredis]"

Looking for a high-level library to handle object mapping? See redis-om-python!

Supported Redis Versions

The most recent version of this library supports redis version 5.0, 6.0, 6.2, 7.0 and 7.2.

The table below highlights version compatibility of the most-recent library versions and redis versions.

Library versionSupported redis versions
3.5.3<= 6.2 Family of releases
>= 4.5.0Version 5.0 to 7.0
>= 5.0.0Version 5.0 to current

Usage

Basic Example

>>> import redis
>>> r = redis.Redis(host='localhost', port=6379, db=0)
>>> r.set('foo', 'bar')
True
>>> r.get('foo')
b'bar'

The above code connects to localhost on port 6379, sets a value in Redis, and retrieves it. All responses are returned as bytes in Python, to receive decoded strings, set decode_responses=True. For this, and more connection options, see these examples.

RESP3 Support

To enable support for RESP3, ensure you have at least version 5.0 of the client, and change your connection object to include protocol=3

>>> import redis
>>> r = redis.Redis(host='localhost', port=6379, db=0, protocol=3)

Connection Pools

By default, redis-py uses a connection pool to manage connections. Each instance of a Redis class receives its own connection pool. You can however define your own redis.ConnectionPool.

>>> pool = redis.ConnectionPool(host='localhost', port=6379, db=0)
>>> r = redis.Redis(connection_pool=pool)

Alternatively, you might want to look at Async connections, or Cluster connections, or even Async Cluster connections.

Redis Commands

There is built-in support for all of the out-of-the-box Redis commands. They are exposed using the raw Redis command names (HSET, HGETALL, etc.) except where a word (i.e. del) is reserved by the language. The complete set of commands can be found here, or the documentation.

Advanced Topics

The official Redis command documentation does a great job of explaining each command in detail. redis-py attempts to adhere to the official command syntax. There are a few exceptions:

  • MULTI/EXEC: These are implemented as part of the Pipeline class. The pipeline is wrapped with the MULTI and EXEC statements by default when it is executed, which can be disabled by specifying transaction=False. See more about Pipelines below.

  • SUBSCRIBE/LISTEN: Similar to pipelines, PubSub is implemented as a separate class as it places the underlying connection in a state where it can't execute non-pubsub commands. Calling the pubsub method from the Redis client will return a PubSub instance where you can subscribe to channels and listen for messages. You can only call PUBLISH from the Redis client (see this comment on issue #151 for details).

For more details, please see the documentation on advanced topics page.

Pipelines

The following is a basic example of a Redis pipeline, a method to optimize round-trip calls, by batching Redis commands, and receiving their results as a list.

>>> pipe = r.pipeline()
>>> pipe.set('foo', 5)
>>> pipe.set('bar', 18.5)
>>> pipe.set('blee', "hello world!")
>>> pipe.execute()
[True, True, True]

PubSub

The following example shows how to utilize Redis Pub/Sub to subscribe to specific channels.

>>> r = redis.Redis(...)
>>> p = r.pubsub()
>>> p.subscribe('my-first-channel', 'my-second-channel', ...)
>>> p.get_message()
{'pattern': None, 'type': 'subscribe', 'channel': b'my-second-channel', 'data': 1}

Author

redis-py is developed and maintained by Redis Inc. It can be found here, or downloaded from pypi.

Special thanks to:

  • Andy McCurdy (sedrik@gmail.com) the original author of redis-py.
  • Ludovico Magnocavallo, author of the original Python Redis client, from which some of the socket code is still used.
  • Alexander Solovyov for ideas on the generic response callback system.
  • Paul Hubbard for initial packaging support.

Redis

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号