Project Icon

pytorch-minimize

PyTorch多变量函数优化工具集

pytorch-minimize是PyTorch生态系统中的多变量函数优化工具集。它集成了BFGS、共轭梯度法和牛顿法等多种算法,支持CPU和GPU运算。该库利用自动微分技术计算精确导数,无需手动提供梯度。此外,它还提供约束优化和非线性最小二乘问题的解决方案,为确定性优化任务提供自动梯度计算和GPU加速支持。

pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
pytorch-blender - 将Blender与PyTorch融合的深度学习框架
BlenderGithubPyTorchblendtorch人工视觉数据开源项目深度学习
blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。
torchgeo - 优化地理空间数据处理的机器学习与遥感工具
GithubPyTorchTorchGeo地理空间数据开源项目机器学习遥感
TorchGeo 是一个基于 PyTorch 的地理空间数据处理库,提供丰富的数据集、采样器、变换和预训练模型,旨在帮助机器学习和遥感专家更高效地处理和探索地理空间数据。该库支持多光谱传感器的预训练模型,并与 PyTorch 数据加载器完全兼容,易于集成到现有的训练工作流中。其全面的文档包括 API 使用指南、教程和示范,非常适合开发者和研究人员使用。
autograd - 支持Python和NumPy的高效自动微分库
AutogradGithubNumPyPython开源项目梯度优化自动微分
Autograd是一个自动微分库,可对原生Python和NumPy代码进行微分。它支持反向模式和前向模式微分,能高效计算标量函数对数组参数的梯度。Autograd兼容Python的多数特性,如循环、条件语句、递归和闭包,并支持高阶导数。这个库主要应用于基于梯度的优化,在机器学习、神经网络和科学计算等领域有广泛应用。
pytorch_memlab - PyTorch CUDA内存分析与优化工具
CUDAGithubPyTorchpytorch_memlab内存管理开源项目性能分析
pytorch_memlab是一个针对PyTorch的CUDA内存管理工具,提供内存分析器和内存报告器等功能。它可以帮助开发者诊断内存溢出问题,理解底层内存机制。该工具支持逐行内存分析、张量内存使用报告,以及将CUDA张量临时移至CPU内存等特性。pytorch_memlab能够协助开发者优化内存使用,提升PyTorch项目性能。
pytorch-generative - PyTorch生成模型开发的全能助手
GithubPyTorch图像生成开源项目机器学习深度学习生成模型
pytorch-generative是一个强大的Python库,为PyTorch生成模型开发提供全方位支持。该库包含SOTA生成模型的参考实现、常用模块的抽象、实用的训练调试工具,以及TensorBoard集成功能。支持自回归模型、变分自编码器等多种算法,并提供简洁API和完善文档,有效提升生成模型的开发和复现效率。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
PyPortfolioOpt - 功能强大的Python投资组合优化库
GithubPyPortfolioOpt均值方差优化夏普比率开源项目投资组合优化风险模型
PyPortfolioOpt是一个用于投资组合优化的Python库。它实现了经典的均值-方差优化、Black-Litterman模型等方法,还包含风险平价等新型技术。该库适用于个人和专业投资者,可高效组合多种投资策略。PyPortfolioOpt提供收益估算、风险建模、目标函数优化等核心功能,采用模块化设计便于扩展。它能帮助用户在考虑风险的同时优化投资组合表现。
neuraloperator - 用于 在 PyTorch 中学习神经算子的综合性库
Fourier Neural OperatorsFunction SpacesGithubNeuralOperatorPyTorchTensorized Neural Operators开源项目
neuraloperator库在PyTorch中实现了神经算子的学习,包括傅里叶神经算子和张量化神经算子。神经算子能实现函数空间间的映射,并支持任何分辨率的数据。该库提供了简单的安装和快速上手指南,并集成了Weights and Biases。欢迎社区贡献和提交问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号