Project Icon

bert-base-portuguese-cased-nli-assin-2

提升句子相似度与语义搜索的句子转换器

模型将句子和段落转换为768维向量,用于聚类和语义搜索等任务。可通过安装sentence-transformers库或直接调用HuggingFace Transformers进行操作。采用SoftmaxLoss训练,并通过EmbeddingSimilarityEvaluator评估,结合BertModel与句子池化实现高效转换。

stsb-bert-tiny-onnx - 基于BERT的轻量级文本向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入模型模型训练自然语言处理语义相似度
这是一个轻量级的文本向量化模型,基于sentence-transformers框架开发。模型可将文本转换为128维向量表示,主要应用于文本聚类和语义搜索。支持通过sentence-transformers和HuggingFace两种方式调用,提供完整的模型评估数据。
msmarco-distilbert-base-v4 - 基于DistilBERT的高性能句子嵌入模型
GithubHuggingfacesentence-transformers嵌入向量开源项目模型特征提取自然语言处理语义相似度
msmarco-distilbert-base-v4是一个基于sentence-transformers框架的句子嵌入模型,能将文本映射到768维向量空间。这个模型适用于语义搜索、聚类等任务,可通过sentence-transformers或Hugging Face Transformers库轻松集成。它采用DistilBERT架构和平均池化策略,为自然语言处理应用提供高效的文本表示能力。
sentence-transformers-multilingual-e5-small - 多语言句子相似性和分类模型,覆盖多种语言选择
AmazonReviewsGithubHuggingfacemultilingual-e5-small分类句子相似性多语言开源项目模型
该项目提供多语言句子相似性和分类功能,适用范围广泛。采用MIT许可证,通过英语、德语、法语、西班牙语和中文等语言实现较高的精准度。通过Amazon反事实分类和情感极性任务表现出色,涵盖丰富的数据集和评估任务,如重排序和语义文本相似等,有效支持文本分类及自动化分析。
multilingual-e5-large-pooled - 多语言支持的句子相似性与特征提取模型
GithubHuggingfaceMTEBmultilingual-e5-large分类句子相似度开源项目模型特征提取
此项目基于多语言处理,融合Sentence Transformers技术,专注于句子相似性与特征提取。支持多语言,适用于分类、重排序、文本聚类等多种场景。模型在各种任务中表现优异,如MTEB AmazonCounterfactualClassification和MTEB BUCC中的分类与双语文本挖掘,表现出色。采用MIT许可证,具有高度使用灵活性。
stsb-mpnet-base-v2 - 将句子映射至向量空间的自然语言处理模型
GithubHuggingfacesentence-transformers嵌入向量开源项目模型特征提取自然语言处理语义相似度
stsb-mpnet-base-v2是一个基于sentence-transformers的模型,能够将句子和段落转换为768维向量。该模型适用于文本聚类和语义搜索等任务,具有使用简便和性能优异的特点。它采用MPNet架构和平均池化方法生成句子嵌入,在多项评估中表现良好,可广泛应用于自然语言处理领域。
bert-base-polish-cased-v1 - 专门针对波兰语的BERT预训练基础模型
BERTGithubHuggingface开源项目机器学习模型波兰语自然语言处理语言模型
bert-base-polish-cased-v1作为专门针对波兰语开发的BERT预训练语言模型,通过HuggingFace transformers库提供,采用了全词掩码技术,支持大小写敏感。模型训练语料包含经过去重的OpenSubtitles数据集、ParaCrawl语料库、波兰议会语料库和波兰维基百科等资源。在KLEJ基准测试中展现出良好的波兰语理解效果,特别适合序列分类和标记分类等自然语言处理任务。
labse_bert - 多语言BERT句子嵌入模型及其应用
GithubHuggingfaceLABSE BERT句子嵌入多语言处理开源项目模型模型应用自然语言处理
LaBSE BERT是一种语言无关的句子嵌入模型,由Fangxiaoyu Feng等人开发并在TensorFlow Hub上提供。该模型能够将文本转换为高效的向量表示,适用于多语言文本处理。利用AutoTokenizer和AutoModel加载模型,并通过mean_pooling方法获取句子嵌入,以增强文本分析和信息检索等领域的性能。使用PyTorch实现编码和处理,多语言文本分析更加轻松。
stsb-bert-tiny-safetensors - 轻量级BERT模型用于生成高质量句子嵌入
GithubHuggingfacesentence-transformers向量空间嵌入模型开源项目模型语义搜索语义相似度
stsb-bert-tiny-safetensors是一个基于sentence-transformers的轻量级BERT模型,将句子和段落映射到128维向量空间。它适用于聚类和语义搜索等任务,提供简单API,支持sentence-transformers和HuggingFace Transformers库集成。该模型在STS基准测试中表现良好,能够生成高质量的句子嵌入。
msmarco-distilbert-base-v3 - 基于DistilBERT的文本向量化模型支持语义搜索与文本聚类
DistilBertGithubHuggingfacesentence-transformers向量映射开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-v3是一个文本向量化模型,可将文本转换为计算机可理解的向量形式。基于sentence-transformers框架开发,主要应用于文本相似度计算、语义搜索和文本聚类等场景。该模型采用轻量级的DistilBERT架构,在保持性能的同时提高了处理效率。
MiniLM-L6-Keyword-Extraction - 高效句子嵌入模型,用于语义搜索与信息聚类
GithubHuggingFaceHuggingfacesentence-transformers句子相似性对比学习开源项目模型语义搜索
此项目通过自监督对比学习,训练出可将句子和段落转化为384维向量的模型,适用于语义搜索、信息检索和句子相似度任务。模型基于1B句子对数据集微调,利用TPU v3-8进行训练,并在Hugging Face社区活动期间开发。用户可使用sentence-transformers或HuggingFace Transformers实现多种自然语言处理应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号