Project Icon

small-e-czech-finetuned-ner-wikiann

捷克语命名实体识别模型精细化

这是一个基于Seznam/small-e-czech的微调模型,专用于wikiann数据集的捷克语命名实体识别。模型在精度、召回率和F1分数上分别达到0.8713、0.8970和0.8840,总体准确率为0.9557。项目采用Transformer、PyTorch等技术框架,使用线性学习率调度器,经过20个epoch的训练。适合需要捷克语文本命名实体识别的开发者和研究人员使用。

wikineural-multilingual-ner - 融合神经网络和知识库的多语言命名实体识别模型
GithubHuggingfaceWikiNEuRal命名实体识别多语言开源项目模型维基百科自然语言处理
WikiNEuRal是一个创新的多语言命名实体识别模型,基于自动生成的高质量数据集训练而成。该模型支持9种语言,通过结合神经网络和知识库方法,在标准NER基准测试中实现了显著突破,F1分数比现有系统提高了6个点。模型集成了Transformers库,便于快速部署和使用。尽管在百科全书类文本上表现出色,但对新闻等其他文体的泛化能力可能有限。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
robeczech-base - 专为捷克语开发的单语RoBERTa模型
CzechGithubHuggingfaceRoBERTaRobeCzech开源项目模型自然语言处理语言模型
RobeCzech是布拉格查理大学开发的捷克语RoBERTa模型,在4900M个token的语料库上预训练。它采用52,000词汇量的字节级BPE分词器,在形态分析、依存句法分析、命名实体识别和语义解析等任务中表现优异。该模型为捷克语自然语言处理研究和应用提供了有力支持,可用于多种下游任务。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
camembert-ner - 基于camemBERT的高性能法语命名实体识别模型
GithubHuggingfaceNERcamemBERTwikiner_fr实体识别开源项目模型自然语言处理
camembert-ner是一个在wikiner-fr数据集上微调的法语命名实体识别模型。该模型在非正式文本如电子邮件和聊天记录中表现出色,尤其善于识别不以大写字母开头的实体。它能够识别人名、组织、地点和其他杂项实体,并可通过HuggingFace框架轻松集成。模型的整体F1分数为0.8914,其中人名识别准确率最高,达到0.9483。
KoELECTRA-small-v3-modu-ner - 基于KoELECTRA的韩语命名实体识别模型
GithubHuggingfaceKoELECTRA开体名识别开源项目机器学习模型自然语言处理韩语
KoELECTRA-small-v3-modu-ner是一个韩语命名实体识别模型,基于koelectra-small-v3-discriminator进行微调。该模型采用BIO标注系统,能够识别15种实体类型,涵盖人工制品、动物和文明等多个领域。在评估集上,模型达到了0.8339的F1分数和0.9628的准确率。用户可以通过Transformers pipeline轻松调用此模型,适用于多种韩语命名实体识别任务。
bert-base-romanian-ner - 罗马尼亚语命名实体识别的高级BERT模型
GithubHuggingfaceRONECbert-base-romanian-ner命名实体识别开源项目文本预处理模型模型性能
此项目提供了一款经过微调的BERT模型,专注于罗马尼亚语命名实体识别,以优异的性能而著称。模型识别15种实体,如人物、地缘政治实体、地点、组织等,并基于RONEC v2.0数据集训练,拥有超过50万标记及80,283个独特实体。生成的标签采用BIO2格式,使其在命名实体识别任务中表现卓越。用户可通过Transformers库的NER管道或Python包便捷使用该模型。
nbailab-base-ner-scandi - 斯堪的纳维亚语言的命名实体识别模型
GithubHuggingfaceScandiNER北欧语言命名实体识别开源项目数据集模型模型性能
这个模型是NbAiLab/nb-bert-base的精调版本,适用于丹麦语、挪威语、瑞典语、冰岛语和法罗语的命名实体识别(NER)。通过整合DaNE、NorNE、SUC 3.0和WikiANN的一些数据集,模型可以提供高精度的NER结果,并支持多种语言包括英语。识别的实体类型包括人名、地名、组织名及其他类别。模型以Micro-F1得分约为89%的表现,以及4.16样本/秒的处理速度表现出色,同时模型体积合理,带来好的准确性和效率平衡。
bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号