Project Icon

japanese-clip-vit-b-16

日语CLIP模型实现跨模态文本图像语义匹配

rinna公司开发的日语CLIP模型采用ViT-B/16 Transformer架构,通过CC12M数据集的日语翻译版本训练而成。该模型实现了日语文本与图像的跨模态理解和语义匹配,提供简洁的API接口,适用于图像检索和跨模态搜索等场景。作为Apache 2.0许可的开源项目,它为日语视觉语言处理领域提供了实用的基础工具。

CLIP-ReID - 基于CLIP的无标签图像重识别新方法
CLIP-ReIDGithub人工智能图像重识别开源项目视觉语言模型计算机视觉
CLIP-ReID提出了一种无需具体文本标签的图像重识别新方法。该方法基于CLIP视觉-语言模型,结合CNN和ViT架构,并运用SIE和OLP等技术进行优化。在MSMT17等多个基准数据集上,CLIP-ReID展现了领先的性能,为图像重识别领域开辟了新的研究方向。
CLIP-ImageSearch-NCNN - 利用CLIP快速进行手机相册中的自然语言图像搜索
CLIPGithubncnn图片搜索开源项目模型自然语言检索
CLIP-ImageSearch-NCNN项目在移动设备和x86平台上使用CLIP模型实现了自然语言图像检索功能。通过图像和文本特征提取,支持以图搜图、以字搜图等多种搜索方式,提供高效的图像搜索体验。项目包含适用于Android和x86平台的demo,利用ncnn进行部署,广泛适用于手机相册等图像搜索应用。
llm-jp-13b-v2.0 - 改进日本大型语言模型的开发与应用
GithubHuggingfacellm-jp大语言模型开源项目指令微调模型自然语言处理预训练
由日本团队发起,项目提供基于Transformer架构的大型语言模型,支持多种编程语言和文本生成,专注于自然语言处理。模型经过大规模数据集的预训练和细化调试,展现出卓越的文本生成能力。
blip-itm-base-coco - BLIP模型革新视觉语言理解和生成技术
BLIPGithubHuggingface图像描述图像文本匹配多模态模型开源项目模型视觉语言预训练
BLIP是一个创新的视觉语言预训练框架,通过引导式方法有效利用网络数据。该模型在图像-文本检索、图像描述和视觉问答等任务上表现出色,并能零样本迁移到视频-语言任务。BLIP不仅提高了视觉语言理解和生成的性能,还为这一领域的统一应用开创了新的可能性。
InternVL2-1B - 多模态大语言模型实现多图像和视频智能理解
GithubHuggingfaceInternVL2人工智能多模态大语言模型开源项目模型自然语言处理计算机视觉
InternVL2-1B是一款新型多模态大语言模型,结合了InternViT-300M-448px视觉模型和Qwen2-0.5B-Instruct语言模型。该模型在文档理解、图表分析和场景文字识别等任务中表现优异,能有效处理长文本、多图像和视频输入。InternVL2-1B在开源多模态模型中表现突出,部分能力可与商业模型比肩。通过采用8k上下文窗口训练,该模型大幅提升了处理长输入序列的能力。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
DIVA - 扩散模型辅助CLIP增强视觉理解能力
AI视觉CLIPDIVAGithub开源项目扩散模型迁移学习
DIVA是一种创新方法,利用扩散模型作为视觉助手优化CLIP表示。通过文本到图像扩散模型的生成反馈,DIVA无需配对文本数据即可提升CLIP视觉能力。在MMVP-VLM细粒度视觉评估基准上,DIVA显著提升了CLIP性能,同时保持了其在29个图像分类和检索基准上的强大零样本能力。这为增强视觉语言模型的视觉理解开辟了新途径。
clip-retrieval - 构建高效图像和文本检索系统的开源工具
Githubclip-retrieval图像嵌入开源项目文本嵌入机器学习语义搜索
clip-retrieval 提供一个建立语义搜索系统的强大工具,使得用户能够迅速实现图像和文本的嵌入计算及索引构建。该项目能在20小时内处理超过1亿的图文嵌入,支持远程查询、数据过滤以及简洁的前端用户界面,适用于学术研究和商业应用。
Clip Interrogator AI - 多模态图像分析和描述生成系统
AI图像分析AI工具CLIP Interrogator图像描述生成机器学习自然语言处理
Clip Interrogator AI是一个集成BLIP和CLIP模型的图像分析系统。它能自动解析图像内容,生成详细的文本描述和标签。通过基础说明和'Flavors'系统,Clip Interrogator AI提供全面的图像解释。这一工具适用于需要深入理解或复制图像风格的场景,为AI图像生成提供精确提示。作为web应用,Clip Interrogator AI简化了复杂的图像分析过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号