Project Icon

japanese-hubert-large

大规模日语语音表示学习模型HuBERT

rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。

bert-base-japanese-whole-word-masking - 基于日语维基百科的BERT预训练模型 采用全词掩码技术
BERTGithubHuggingface全词掩码开源项目日语预训练模型模型维基百科语料自然语言处理
该BERT模型基于日语维基百科数据预训练,采用IPA词典和MeCab进行分词,并引入全词掩码技术。模型架构与BERT base一致,包含12层结构、768维隐藏状态和12个注意力头。训练语料来自2019年9月的日语维基百科,词表规模为32000。模型在Cloud TPUs上训练完成,遵循原始BERT的训练配置,并以CC BY-SA 3.0许可证发布。
wavlm-large - 微软WavLM:全栈语音处理的自监督预训练模型
GithubHuggingfaceSUPERB基准测试WavLM开源项目模型自监督学习语音处理预训练模型
WavLM-Large是微软开发的自监督语音预训练模型,针对全栈语音处理任务进行优化。模型基于HuBERT框架,引入混合话语训练策略和门控相对位置偏置,提升了语音内容建模和说话人身份识别能力。通过在94,000小时多样化语音数据上训练,WavLM-Large在SUPERB基准测试中展现出卓越性能,为多种语音处理任务带来显著改进。
hubert-base-cc - 先进的匈牙利语BERT模型在自然语言处理任务中表现卓越
BERT模型GithubHuggingfacehuBERT匈牙利语命名实体识别开源项目模型自然语言处理
huBERT-base-cc是专为匈牙利语设计的BERT模型,基于Common Crawl和匈牙利维基百科数据训练而成。该模型在分块和命名实体识别等任务中表现优异,超越了多语言BERT的性能。作为一个通用的自然语言处理工具,huBERT-base-cc为匈牙利语研究和应用提供了强大支持,在多个领域树立了新的基准。
RakutenAI-7B-chat - RakutenAI-7B模型的日本语言处理技术与性能表现
GithubHuggingfaceMistralRakutenAI-7B大型语言模型开源项目指令微调日本语言模型模型
RakutenAI-7B在日本语言理解测试中表现优异,并在英文项目中保持高竞争力。基于Mistral模型架构,该项目成功调整了Mistral-7B-v0.1的预训练权重,词汇表扩展至48k以优化日语字符处理率。独立评估显示其适用于对话应用的性能优越,评分为0.393和0.331,方法简便实用。
roberta-large - 深入探索韩语RoBERTa大型语言模型
GithubHuggingfaceKLUERoBERTa模型开源项目机器学习模型自然语言处理韩国语
此开源项目展示了在韩语上预训练的RoBERTa大型语言模型,使用BertTokenizer加载,专为提升韩语自然语言处理任务而设计,是研究与应用的有力辅助工具。
bert-base-japanese-v3-unsup-simcse-jawiki - 使用无监督SimCSE的BERT日文模型特性和应用
GithubHuggingfaceSimCSEbert-base-japanese-v3-unsup-simcse-jawikitransformers大规模语言模型开源项目模型语义相似度
本项目利用无监督SimCSE方法对BERT大型语言模型进行微调,重点在于日文数据集的应用。通过cl-tohoku/bert-base-japanese-v3模型和来自jawiki的句子数据集进行训练,旨在提高语言理解与相似度计算的能力。项目附带丰富的使用案例,例如通过Colab笔记本进行的训练与推论,帮助研究者与开发者了解模型的实际应用。这一无监督方法为自然语言处理任务提供了创新方案,尤其适合有特定语言需求的专业项目。
hubert-base-persian-speech-gender-recognition - HuBERT波斯语语音性别识别模型
GithubHuBERTHuggingfaceWav2Vec2开源项目模型波斯语深度学习语音性别识别
这是一个基于HuBERT的波斯语语音性别识别模型。该模型利用先进的语音处理技术,能够准确区分男女声音。在测试中,模型表现优异,F1分数达0.98。项目提供了完整的使用指南,涵盖环境设置、模型调用和预测流程。这一工具可广泛应用于语音分析和用户画像等领域。
japanese-reranker-cross-encoder-xsmall-v1 - 小型高效的日语Reranker模型,通过CrossEncoder技术实现精确排序
CrossEncoderGithubHuggingfaceRerankerSentenceTransformers开源项目日本語模型
这个开源项目提供了一款专为日语环境设计的小型Reranker模型,采用CrossEncoder技术实现精确排序。模型具备6层架构和384隐藏单元,支持GPU加速,可在多种应用场景中表现优秀。通过SentenceTransformers和HuggingFace库,模型支持在JQaRA和JGLUE等多个数据集上的应用,以实现广泛的适用性和性能提升。
bert-finetuned-japanese-sentiment - 日语电商评论情感分析BERT微调模型
BERTGithubHuggingface开源项目情感分析日语处理机器学习模型自然语言处理
该模型基于cl-tohoku/bert-base-japanese-v2微调,使用20,000条亚马逊日语评论进行训练。经过6轮训练后,模型能够将文本准确分类为正面、中性或负面情感,验证集准确率达81.32%。此模型主要适用于日语电商评论等领域的情感分析任务。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号