Project Icon

gym-ignition

增强机器人环境创建的可复现性框架

此项目提供了一个基于ScenarIO的框架,用于创建可复现的机器人环境,适用于强化学习研究。通过提供Task和Runtime抽象层,开发者能更专注于决策逻辑的开发,而无需担心底层代码的实现。框架还包含简化领域随机化实现的randomizers,并支持固定和浮动基机器人。项目主要目标是简化和优化环境开发,同时包括一些示例环境供参考。详情及安装教程请访问官方网页。

rl_games - 强化学习框架支持多环境及算法的高性能实现
GPU加速GithubRL Games多智能体训练开源项目强化学习机器人学习
rl_games是一个高性能强化学习库,实现了PPO、A2C等算法,支持NVIDIA Isaac Gym、Brax等环境的GPU加速训练。该库具备异步actor-critic、多智能体训练、自对弈等功能,可在多GPU上并行。rl_games提供Colab notebook示例便于快速上手,在多个基准测试中表现出色。作为一个功能丰富的强化学习工具,rl_games兼具高性能和易用性。
gym-anytrading - 基于OpenAI Gym的交易算法模拟环境
FOREXGithubOpenAI Gym交易算法开源项目强化学习股票交易
gym-anytrading提供了一系列基于OpenAI Gym的交易算法模拟环境。它包含TradingEnv、ForexEnv和StocksEnv三个环境,支持外汇和股票市场交易模拟。该项目专注于简单性、灵活性和全面性,可以轻松定制交易动作、仓位和奖励函数等。它还提供了示例代码,展示如何与Stable-Baselines3等库集成使用。项目GitHub链接:https://github.com/AminHP/gym-anytrading
Gym.NET - OpenAI Gym的C#移植版,适用于强化学习环境
C#GithubGym.NETOpenAI Gym工具包开源项目强化学习
Gym.NET是OpenAI Gym的C#移植版本,提供标准化的强化学习开发环境。用户可通过NuGet安装Gym.NET及其多种环境和渲染模块,支持例如CartPole-v1等经典环境的运行和渲染。项目目标是逐步实现多种OpenAI Gym环境,包括经典、Mujoco、Box2D和Atari等。详细的安装步骤和示例代码请参考项目的GitHub页面。
DRL-robot-navigation - 移动机器人深度强化学习自主导航方案
GazeboGithubROSTD3开源项目机器人导航深度强化学习
项目集成了ROS、Gazebo和PyTorch,构建了一个移动机器人深度强化学习导航框架。系统利用TD3算法训练机器人应对复杂环境,实现障碍物识别和目标导航。该方案为自主移动机器人研究提供了一个开源的实验平台。
Minigrid - 离散网格世界强化学习环境库 支持多样化任务和语言指令
BabyAIGithubGymnasiumMinigrid开源项目强化学习网格世界环境
Minigrid是一个用于强化学习研究的离散网格世界环境库。它采用Gymnasium标准API,具有轻量、快速和易定制的特点。该库包含原始Minigrid和BabyAI两类环境,提供多种目标导向和分层任务,如物品操作、门禁管理和迷宫导航等。BabyAI环境还集成了基于语言的任务指令生成功能,有助于语言学习研究。Minigrid支持通过编程调整环境复杂度,便于实施课程学习和难度优化。
gym-pybullet-drones - 轻量级无人机仿真环境 助力强化学习与控制算法研究
GithubPyBullet仿真开源项目强化学习控制无人机
gym-pybullet-drones是基于PyBullet的轻量级无人机仿真环境,用于强化学习和控制算法研究。支持多机协同飞行、PID控制和下洗效应模拟,兼容Gymnasium、Stable-Baselines3等框架。集成SITL仿真和固件,为无人机算法开发和测试提供灵活高效的平台。
MO-Gymnasium - 标准化多目标强化学习环境和算法开发平台
GithubMO-GymnasiumPython库多目标强化学习开源项目环境API算法开发
MO-Gymnasium是一个开源Python库,为多目标强化学习(MORL)算法提供标准化开发和比较平台。它基于Gymnasium API,提供返回向量化奖励的环境集合,包括MORL文献中的环境和经典环境的多目标版本。该库支持简单的环境创建和交互,并提供LinearReward包装器实现奖励函数标量化。MO-Gymnasium采用严格的版本控制,保证实验可重复性,是MORL研究和基准测试的理想工具。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
rl-mpc-locomotion - 强化学习与模型预测控制结合的四足机器人运动框架
GithubIsaac GymRL MPC Locomotion四足机器人开源项目强化学习模型预测控制
这个项目为四足机器人运动任务开发了一个快速仿真和强化学习训练框架。它采用分层控制结构,结合高层策略网络和低层模型预测控制器。其MPC控制器基于Cheetah Software改写,便于移植到主流仿真平台。项目利用NVIDIA Isaac Gym进行并行训练,使用Unitree Robotics的Aliengo模型,并实现了从仿真到实物的迁移。该框架适用于多种四足机器人类型和步态,为相关研究提供了有力支持。
scalingup - 使用语言引导的机器人技能自动生成框架
GithubScaling Up and Distilling Down开源项目扩展任务数据生成机器人技能获取语言引导
该项目提出了一种无需专家示范、手动奖励监督和手动语言注释的语言引导技能学习框架。它能够通过任务描述自动生成多样化的机器人轨迹,并含有成功标签和详细的语言标签。该框架支持在多种NVIDIA GPU环境下运行,包括GTX 1080和RTX系列。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号