Project Icon

pytorch_scatter

优化分散操作的 PyTorch 扩展库

该扩展库为PyTorch提供了高效的稀疏更新和分段操作,包含scatter、segment_coo和segment_csr,支持sum、mean、min和max等归约方式。操作可适用于不同数据类型,并支持CPU和GPU。复合功能包括scatter_std、scatter_logsumexp、scatter_softmax和scatter_log_softmax。安装过程简单,适用于各大操作系统和PyTorch/CUDA组合。

pytorch-cpp - C++ 实现的 PyTorch 教程,为深度学习研究者提供从基础到高级的全面指南
C++GithubLibTorchPyTorch开源项目教程深度学习
本项目提供了 C++ 版本的 PyTorch 教程,适用于从基础到高级的深度学习研究者,涵盖线性回归、卷积神经网络和生成对抗网络等内容。支持 macOS、Linux 和 Windows 的多平台编译和运行,项目要求包括 C++-17 兼容编译器、CMake 和合适版本的 LibTorch。含有全面的构建与运行指南,以及交互式教程和 Docker 支持。
serve - 提高PyTorch模型服务效率和安全性的关键技术
GithubPyTorchTorchServe大规模模型安全性开源项目模型服务
TorchServe是一款高效灵活的平台,用于生产环境中PyTorch模型的部署和扩展。最新版本通过默认启用的令牌授权机制和增强的模型API控制,有效预防未授权API调用和恶意代码风险。此外,该平台还支持在不同环境(包括本地、云服务及各类硬件)中快速部署模型。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
HolisticTraceAnalysis - 高效分析分布式训练性能瓶颈的开源工具
GPUGithubHolisticTraceAnalysisPyTorch分布式训练开源项目性能分析
HolisticTraceAnalysis是一款开源性能分析工具,用于识别分布式训练中的性能瓶颈。它分析PyTorch Profiler收集的跟踪数据,提供时间分解、内核分析、通信计算重叠等功能。支持Linux和Mac系统,适用于Python 3.8及以上版本。开发者可通过该工具深入分析和优化分布式训练性能。
torchio - 深度学习医疗图像处理工具集
GithubPythonTorchIO医药图像开源项目数据增强深度学习
此工具集为深度学习医疗图像处理提供高效解决方案,涵盖读取、预处理、采样、增强和写入3D医疗图像等功能。支持多种图像转换操作,包括随机仿射变换和特定领域伪影模拟。受NiftyNet启发,该项目广泛应用于医学AI研究,提升数据处理效率和模型性能。
torchchat - 使用Python和C/C++运行大型语言模型的轻量化实现
GithubPyTorchPythontorchchat大语言模型开源项目模型部署
torchchat可以通过Python和C/C++应用程序无缝运行大型语言模型(LLMs),支持桌面、服务器以及iOS和Android设备。该项目特点包括PyTorch原生执行、高效运行、支持多种硬件和操作系统、多种数据类型和量化方案。其安装步骤简便,并提供多种运行模式,如命令行、浏览器界面和REST API,适用于各类开发环境。
ssd.pytorch - PyTorch实现的高效SSD目标检测器,兼容多数据集与实时可视化
GithubPyTorchSSD开源项目数据集训练评估
该项目实现了基于PyTorch的SSD目标检测器,支持VOC和COCO数据集,并可使用Visdom进行训练过程中的实时损失可视化。页面包含详细的安装、训练和评估指南,并提供预训练模型的使用说明。项目展示了高效性能,并包含未来功能更新计划,帮助开发者快速上手并扩展应用。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
keops - 大规模矩阵运算与自动微分的高效GPU加速库
GPU计算GithubKeOps开源项目核方法符号矩阵自动微分
KeOps是一个开源库,专门用于高效计算大型数组的归约运算。它集成了高效C++程序和自动微分引擎,支持Python、Matlab和R等多种编程语言。KeOps尤其适合处理核矩阵向量乘积、K近邻查询和N体问题等计算,即使在核矩阵或距离矩阵超出内存容量的情况下也能高效运行。与PyTorch GPU基准相比,KeOps在多种几何应用中能实现10-100倍的性能提升,广泛应用于核方法和几何深度学习等领域。
pygmo2 - 大规模并行优化Python库
GithubPython库pygmo优化算法并行计算开源项目科学计算
pygmo是一个开源的、用于大规模并行优化的科学Python库。它围绕提供优化算法和优化问题的统一接口而构建,使其易于在大规模并行环境中部署。该库支持多目标优化和多种优化算法,能够高效处理复杂的优化问题和大规模数据。pygmo提供了全面的文档和教程,适用于研究、教学以及各种实际应用场景。其强大的功能和灵活性使其成为解决复杂优化挑战的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号