Project Icon

returnn

多GPU优化的Theano/TensorFlow循环神经网络框架

RETURNN是一个基于Theano和TensorFlow的现代循环神经网络框架,优化于多GPU环境下的快速可靠训练。其主要特点包括简便的配置与调试、支持多种实验模型,以及高效的训练和解码速度。项目还支持小批量训练、序列分块训练、长短期记忆网络、多维LSTM和大数据集内存管理,广泛应用于机器翻译和语音识别领域。RETURNN提供详尽的文档和使用教程,并通过StackOverflow标签提供社区支持。

onnxruntime - 跨平台的机器学习模型推理与训练加速工具
GithubONNX Runtime开源项目机器学习模型训练深度学习硬件加速
ONNX Runtime是一款跨平台的机器学习推理和训练加速工具,兼容PyTorch、TensorFlow/Keras、scikit-learn等深度学习框架及传统机器学习库。它支持多种硬件和操作系统,通过硬件加速和图优化实现最佳性能,显著提升模型推理和训练速度,尤其在多节点NVIDIA GPU上的Transformer模型训练中表现出色。
fast_rnnt - 快速高效的RNN-T损失计算方法
GithubPyTorchRNN-T剪枝开源项目快速实现损失计算
fast_rnnt项目实现了一种快速高效的RNN-T损失计算方法。通过pruned rnnt算法,该方法使用简单joiner网络获取修剪边界,再评估完整非线性joiner网络。项目提供简单、平滑和修剪三种RNN-T损失计算功能,支持pip安装。与其他实现相比,fast_rnnt在计算速度和内存使用方面表现优异。
recurrent-memory-transformer-pytorch - Recurrent Memory Transformer的PyTorch实现助力超长序列处理
GithubPyTorchRecurrent Memory Transformer人工智能开源项目深度学习自然语言处理
Recurrent Memory Transformer的PyTorch实现项目致力于解决超长序列处理问题。该模型通过创新的记忆机制和高效注意力机制,可处理长达百万token的序列。项目提供简便的安装使用方法,支持XL记忆和记忆回放反向传播等先进功能。这一实现在长序列处理、因果推理和强化学习等领域展现出优异性能,为AI研究和应用开发提供了实用工具。
cond_rnn - 条件时间序列预测的深度学习框架
ConditionalRecurrentGithubKerasRNNTensorFlow开源项目时间序列
ConditionalRecurrent是一个兼容Keras的包装器,用于基于时间不变数据进行条件时间序列预测。它支持各种循环层,通过学习条件表示来初始化RNN状态,有效模拟P(x_{t+1}|x_{0:t}, cond)。该库适用于包含外部输入的时间序列数据,如天气预测,为整合时间不变条件信息提供了实用的解决方案。
retvec - 多语言文本向量化的高效解决方案
GithubRETVecTensorFlow多语言对抗性弹性开源项目文本向量化
RETVec是一种创新的文本向量化工具,为高效处理多语言文本而开发。它具有内置的抗干扰能力,可应对各种字符级修改。该工具支持超过100种语言,无需额外的词汇表。RETVec作为一个轻量级组件,可无缝集成到TensorFlow模型中。它同时提供TensorFlow Lite和JavaScript版本,适用于移动设备和网页应用。RETVec在提升模型稳定性的同时,保证了计算效率,是文本处理任务的理想选择。
RWKV-LM - 高性能并行化RNN,探索和应用RWKV模型
GithubRNNRWKVTransformer并行化开源项目性能
RWKV是一个高性能的并行化RNN,具有变换器级别的性能。该模型实现了快速的推理和训练速度,不依赖于传统的注意力机制,而是通过隐藏状态进行计算,优化了VRAM的使用,并支持处理无限长度的文本上下文。RWKV的这些特点使其在进行句子嵌入和处理复杂文本任务时显示出优越的能力。
neon - 深度学习框架,兼容多硬件,实现高效模型训练
GithubIntelMKLNervananeon开源项目深度学习框架
neon是Intel推出的深度学习框架,旨在实现最佳性能,兼容多种硬件。提供全面的教程和iPython笔记本,支持卷积层、RNN、LSTM、GRU和BatchNorm等常用层。预训练模型库和示例脚本涵盖VGG、强化学习、深度残差网络等。neon v2.0.0+优化了CPU性能,集成Intel Math Kernel Library,用户可快速安装并部署在CPU、GPU或Nervana硬件上。
tiny-cuda-nn - 专注于快速训练和查询神经网络的开源框架
C++编程CUDAGPUGithubTiny CUDA Neural Networks开源项目深度学习
Tiny CUDA Neural Networks是一个紧凑、高效的开源框架,专注于快速训练和查询神经网络。它包含优化的多层感知器(MLP)和多分辨率哈希编码,并支持多种输入编码、损失函数和优化器。适用于NVIDIA GPU,通过C++/CUDA API和PyTorch扩展,助力高性能计算和深度学习项目。
PyContinual - 多任务持续学习的开源Python框架
GithubPyContinual开源项目持续学习神经网络自然语言处理迁移学习
PyContinual是一个开源的持续学习框架,支持语言和图像多种任务类型。框架包含40多种基线方法,可进行任务增量和领域增量学习。它具有易用性和可扩展性,允许研究者快速更改实验设置和添加自定义组件。PyContinual持续集成最新研究成果,提供最新基准测试结果,为持续学习研究提供了全面的实验平台。
tensorpack - 高效的神经网络训练接口,支持多GPU和分布式训练
GithubTensorpack可重复性研究开源项目数据加载性能训练速度高质量实现
Tensorpack是基于TensorFlow的神经网络训练接口,专注于提升训练速度与性能。其高效的数据加载和并行化策略显著提高了训练速度,尤其是在CNN上的表现比Keras代码快1.2到5倍。Tensorpack适合需要可重复和灵活研究的开发者,支持多GPU和分布式训练,并提供多个著名论文的高质量复现案例。Tensorpack并不是一个模型包装器,用户可以灵活使用TensorFlow及其他高层API。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号