Project Icon

cards-top_right_swin-tiny-patch4-window7-224-finetuned-v2_more_data

微软Swin Transformer图像分类模型的性能优化实践

本项目展示了一个基于Swin Transformer架构的图像分类模型优化案例。经过50轮训练后,模型准确率从43.37%提升至62.69%,验证损失降低至0.92。优化过程采用了Adam优化器和线性学习率策略,实现了稳定的性能提升。

MobileCLIP-S2-OpenCLIP - 高效图像-文本模型通过多模态强化训练实现性能突破
GithubHuggingfaceMobileCLIPOpenCLIP图像文本模型多模态强化训练开源项目模型零样本图像分类
MobileCLIP-S2-OpenCLIP是一款基于多模态强化训练的高效图像-文本模型。相比SigLIP的ViT-B/16模型,它在性能上有所超越,同时速度提升2.3倍,模型体积缩小2.1倍,且仅使用了1/3的训练样本。在ImageNet零样本分类任务中,该模型达到74.4%的Top-1准确率,在38个数据集上的平均性能为63.7%,体现了出色的效率与性能平衡。
vit-base-cats-vs-dogs - 基于Vision Transformer的猫狗图像分类模型
GithubHugging FaceHuggingfaceViT模型图像分类开源项目模型猫狗数据集迁移学习
该模型是基于google/vit-base-patch16-224-in21k在cats_vs_dogs数据集上微调的图像分类模型。采用Vision Transformer架构,在评估集上实现98.83%的准确率。模型可用于宠物识别、动物摄影分类等猫狗图像分类任务。开发者可以方便地将其集成到各种应用中,实现高效的猫狗识别功能。
siglip-base-patch16-224 - SigLIP改进CLIP模型 实现更高效的零样本图像分类和检索
GithubHuggingfaceSigLIP图像分类多模态模型开源项目模型自然语言处理计算机视觉
SigLIP是一种基于CLIP改进的多模态预训练模型,采用sigmoid损失函数优化语言-图像学习。该模型在WebLI数据集上以224x224分辨率预训练,适用于零样本图像分类和图像-文本检索任务。相比CLIP,SigLIP支持更大批量处理,且在小批量场景下表现更优。用户可通过Transformers库轻松加载和使用SigLIP模型,实现灵活高效的多模态应用。
deit-base-distilled-patch16-224 - DeiT模型通过蒸馏技术提升ImageNet图像分类性能
DeiTGithubHuggingfaceImageNet图像分类开源项目模型蒸馏视觉Transformer
DeiT-base-distilled-patch16-224是一种基于Vision Transformer的图像分类模型,通过蒸馏技术从CNN教师模型中学习。该模型在ImageNet-1k数据集上进行预训练和微调,在224x224分辨率下实现83.4%的top-1准确率。模型采用16x16图像块嵌入和蒸馏token,适用于多种计算机视觉任务,尤其在图像分类领域表现优异。
regnety_120.sw_in12k_ft_in1k - 高级图像分类模型,优化大规模数据集的性能
GithubHuggingfaceRegNetY图像分类开源项目数据集模型特征提取预训练
RegNetY-12GF模型致力于图像分类,先在ImageNet-12k上预训练,再在ImageNet-1k上微调。其结构支持多项增强功能,如随机深度和梯度检查点,提高模型准确性和效率。基于timm库实现,广泛用于特征图提取和图像嵌入,适用于多种图像处理场景。
vit-small-patch16-224 - Google开发的轻量级视觉Transformer模型用于高效图像分类
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelssafetensors图像分类开源项目模型
vit-small-patch16-224是Google开发的轻量级视觉Transformer模型,针对高效图像分类任务进行了优化。该模型由社区成员从timm仓库转换并上传至Hugging Face平台。它与ViT-base模型具有相同的使用方式,特别适合计算资源有限的应用场景。模型在ImageNet数据集上经过训练,可用于各种计算机视觉任务,如图像识别和分类。相比ViT-base,它具有更小的模型尺寸和更快的推理速度,同时保持了良好的性能表现。需要注意的是,模型的safetensors版本要求torch 2.0或更高版本的运行环境。
owlv2-base-patch16-finetuned - 介绍OWLv2模型在零样本物体检测中的应用与发展
CLIPGithubHuggingfaceOWLv2对象检测开源项目模型计算机视觉零样本检测
OWLv2模型是用于零样本物体检测的一个创新模型,使用CLIP作为多模态基础,同时采用ViT型Transformer以提取视觉特征,并通过因果语言模型获取文本特征。此模型的最大特点是其开放词汇分类功能,通过将固定分类层权重替换为文本模型中的类别名称嵌入实现。在常见检测数据集上,CLIP从头训练并微调,以学习精确的对象检测方法。此工具为AI研究人员提供了在计算机视觉领域探索鲁棒性、泛化和其他能力的机会。
my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
vit_base_patch16_224.augreg2_in21k_ft_in1k - 高性能Vision Transformer图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelstimm图像分类开源项目模型
该模型基于Vision Transformer架构,在ImageNet-21k上预训练并在ImageNet-1k上微调,采用额外的数据增强和正则化技术。适用于图像分类和特征提取,具有8660万参数,支持224x224输入尺寸。模型在性能和效率间取得平衡,可满足多样化的计算机视觉任务需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号