Project Icon

poolformer

视觉任务中MetaFormer架构的应用及其效能

该项目展示了MetaFormer架构在视觉任务中的应用,特别通过简单的池化操作实现token混合。研究证实,基于这种方法的PoolFormer模型在ImageNet-1K验证集上表现优于DeiT和ResMLP。此外,后续工作介绍了IdentityFormer、RandFormer等MetaFormer基线模型。本项目证明了Transformer模型的竞争力主要来源于其通用架构MetaFormer,而非特定的token混合器。

DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
mask2former-swin-large-ade-semantic - Mask2Former:统一架构实现多类型图像分割
GithubHuggingfaceMask2FormerTransformer图像分割开源项目模型计算机视觉语义分割
Mask2Former-Swin-Large-ADE-Semantic是一款先进的图像分割模型,基于Swin backbone构建并在ADE20k数据集上训练。该模型采用统一架构处理实例、语义和全景分割任务,通过预测掩码和标签集实现多类型分割。其核心优势在于采用改进的多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率方面均优于前代MaskFormer模型。Mask2Former适用于广泛的图像分割场景,能够提供精确的分割结果。
mask2former-swin-large-cityscapes-semantic - Mask2Former大型语义分割模型 适用多种图像分割任务
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一款先进的语义分割模型,基于Swin骨干网络在Cityscapes数据集上训练。该模型采用统一的掩码预测方法,可同时处理实例、语义和全景分割任务。通过引入多尺度可变形注意力Transformer和带掩码注意力的Transformer解码器,Mask2Former在性能和效率上均超越了先前的最佳模型。它为研究人员和开发者提供了一个强大的工具,可用于各种图像分割应用。
mask2former-swin-tiny-coco-instance - Mask2Former模型:统一处理实例、语义和全景图像分割
GithubHuggingfaceMask2Former图像分割实例分割开源项目模型深度学习计算机视觉
Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。
oneformer_ade20k_dinat_large - OneFormer单一模型在多任务图像分割中实现卓越表现
ADE20kGithubHuggingfaceOneFormer图像分割实例分割开源项目模型语义分割
OneFormer模型借助单一架构和模块在ADE20k数据集上进行训练,适用于语义、实例和全景分割。通过使用任务令牌,该模型能够动态调整以满足不同任务要求,不仅显著优化了分割效果,还具备替代专门化模型的潜力。
mask2former-swin-large-mapillary-vistas-panoptic - Mask2Former:集实例、语义和全景分割于一体的图像分割模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former是一个基于Swin主干网络的高级图像分割模型,在Mapillary Vistas数据集上训练用于全景分割。它通过预测掩码和标签集合,统一处理实例、语义和全景分割任务。该模型采用改进的Transformer架构和高效训练策略,性能和效率均优于先前的MaskFormer。Mask2Former为各类图像分割应用提供了强大支持,推动了计算机视觉技术的进步。
mask2former-swin-base-coco-panoptic - 多任务图像分割的先进模型
GithubHuggingfaceMask2Former图像分割开源项目模型深度学习计算机视觉语义分割
Mask2Former-swin-base-coco-panoptic是一个基于COCO全景分割数据集训练的先进图像分割模型。它采用统一方法处理实例、语义和全景分割任务,通过预测掩码集合和对应标签实现多任务分割。该模型引入多尺度可变形注意力Transformer和masked attention等技术,在性能和效率上超越前代方法。Mask2Former为计算机视觉领域提供了versatile的图像分割解决方案,适用于多种分割场景。
LLFormer - 高效处理超高清低光照图像的Transformer模型
AAAIGithubTransformer低光照图像增强开源项目超高清
LLFormer是一种新型Transformer模型,专门用于增强超高清低光照图像。通过创新的轴向多头自注意力和跨层注意力融合机制,LLFormer能高效处理4K和8K分辨率图像。在UHDLOL基准测试中,该模型性能显著优于现有方法。LLFormer不仅提升了图像质量,还能改善低光照条件下人脸检测等下游任务的效果。
maskformer-swin-large-ade - MaskFormer模型提升语义分割效率与精确度的创新方案
ADE20kGithubHuggingfaceMaskFormerpanoptic分割实例分割开源项目模型语义分割
MaskFormer通过ADE20k数据集训练,利用Swin结构提升语义、实例和全景分割性能。该模型适用于多种分割任务,采用统一的掩码及标签预测方式处理三类分割,促进图像细分任务的研究和应用,如建筑物和场景的精确分割。项目由Hugging Face团队支持,可在模型中心找到其他版本进行适用性调优。
segformer-b1-finetuned-cityscapes-1024-1024 - SegFormer模型在语义分割中的高效应用
CityscapesGithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型
SegFormer模型在CityScapes数据集上进行了微调,使用Transformer结构和轻量级MLP解码头实现高效的图像语义分割。适用于图像分割领域的研究者和开发者,可通过Python代码轻松使用。该模型支持高分辨率图像处理,展示了Transformer的潜力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号