Project Icon

MAPIE

开源机器学习不确定性量化与风险控制库

MAPIE是一个开源Python库,用于量化机器学习模型的不确定性和控制风险。它计算可控覆盖率的置信预测区间,适用于回归、分类和时间序列分析。MAPIE还可控制多标签分类和语义分割等复杂任务的风险。该库兼容各类模型,遵循scikit-learn API,基于同行评审算法提供理论保证。MAPIE仅依赖scikit-learn和numpy,支持Python 3.7及以上版本。

practical-machine-learning-with-python - 实际应用中的机器学习与深度学习指南
GithubPractical Machine Learning with PythonPython开源项目数据科学机器学习深度学习
通过结构化的三层方法和实际案例,本书帮助读者掌握机器学习和深度学习技能。内容涵盖scikit-learn、pandas、tensorflow等工具,提供数据处理、特征工程、建模和部署的详细指导,以及多个跨行业的案例研究,支持独立完成端到端的机器学习项目。
Made-With-ML - 学习设计、开发、部署和迭代机器学习生产系统的开放资源
GithubMLOpsMade With ML开源项目机器学习模型部署软件工程
Made With ML 是开发者学习设计、开发、部署和迭代机器学习生产系统的开放资源。它提供完整课程和代码实践指导,支持本地及云集群环境配置,适合求知欲强的技术人员和研究者。
eurybia - 开源Python库助力数据和模型偏移检测
EurybiaGithubPython库开源项目数据漂移机器学习模型漂移
Eurybia是一个Python开源库,专注于检测数据和模型偏移,并在模型部署前进行数据验证。该工具生成详细的HTML报告,支持模型性能监控、AI系统审核和治理优化。通过直观的可视化和动态报告,Eurybia简化了数据特征和偏移分析,促进了团队协作和跨部门沟通。
pomegranate - Python 中快速、灵活且易于使用的概率建模
GPU支持GithubPyTorchpomegranate开源项目概率建模混合精度支持
新版本将计算后端从Cython迁移到PyTorch,提升了速度和灵活性。新特性包括GPU支持、半精度计算、多变量分布、缺失值处理以及更好的社区贡献。改进后的pomegranate在混合模型、贝叶斯网络和隐马尔科夫模型的构建中表现出色,实现了高度的灵活性和效率。
mleap - 快速部署机器学习流水线与算法的实用工具包
GithubMLeapScikit-learnSpark开源项目性能机器学习数据管道
MLeap提供高性能、便携、易于集成的生产库,支持将Spark和Scikit-learn的机器学习流水线导出为便携格式并执行。通过其执行引擎和序列化格式,数据科学家和工程师可以无需依赖Spark或Scikit-learn环境,将数据流水线和算法轻松部署到生产环境中。MLeap支持多种序列化格式(如JSON、Protobuf),并与现有技术高度集成,提供用户灵活定制数据类型和转换器的能力。
ML-CaPsule - 全面的机器学习项目集合与实践资源
GithubML-CapsulePython开源项目数据科学机器学习项目集合
ML-CaPsule是一个综合性机器学习资源库,收录了从入门到高级的多个主题。项目包括机器学习基础概念、深度学习、自然语言处理等领域的实践项目。学习者可通过这些资源掌握数据提取、可视化和特征选择等核心技能。此外,项目还涵盖统计学基础和数据科学多个方面的知识,为用户提供全面而实用的学习内容。
mango - 机器学习超参数并行优化库
GithubMango并行优化开源项目搜索空间调度器超参数调优
Mango是一个专注于机器学习超参数优化的Python库。它支持在复杂搜索空间中进行并行优化,适用于连续、离散和类别值。该库特点包括简便的搜索空间定义、先进的无梯度优化算法、模块化调度设计和应用层故障检测。Mango可部署于本地、集群或云环境,在普通硬件上也能实现良好扩展性。通过在实际生产环境中的持续应用和改进,Mango不断增添新功能。
modelscan - 开源AI模型安全扫描工具助力高效检测风险
GithubModelScan安全扫描序列化攻击开源项目机器学习模型
ModelScan是Protect AI开发的开源AI模型安全扫描工具,支持H5、Pickle和SavedModel等多种格式。它可快速识别PyTorch、TensorFlow、Keras等框架中的模型安全风险,有效防范模型序列化攻击。ModelScan易于集成到机器学习流程中,为AI模型全生命周期提供安全保障,保护数据和系统安全。
pycaret - 开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程
GithubPyCaretPython低代码开源开源项目机器学习
PyCaret是一个开源的低代码Python机器学习库,能够简化和自动化机器学习工作流程。通过减少代码量,PyCaret使实验更高效、更快速。它支持scikit-learn, XGBoost, LightGBM, CatBoost等多种机器学习框架,用户可以通过少量代码完成模型训练、评估和预测。无论是经验丰富的数据科学家,还是对低代码解决方案感兴趣的用户,PyCaret都是理想选择。
mlimpl - 全面的机器学习和深度学习算法实现库
Github开源项目强化学习机器学习深度学习算法实现统计学习
mlimpl提供了多种机器学习、深度学习和强化学习算法的实现。从线性回归、决策树到CNN、GAN、LSTM等深度模型,以及多臂老虎机、马尔可夫决策过程、DQN、Actor-Critic等强化学习算法均有涵盖。代码结构类似sklearn,配有详细文档和注释,便于学习、应用和二次开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号