Project Icon

hdbscan

灵活高效的层次密度聚类算法

HDBSCAN是一种高性能的层次密度聚类算法,能够处理不同密度的聚类并对参数选择更加稳健。该算法主要参数直观易选,无需复杂调优,适合探索性数据分析。HDBSCAN具有快速可靠的特点,能返回有意义的聚类结果。此外,它还支持异常检测和分支检测,并提供可视化工具辅助理解聚类结果。该开源项目在GitHub上提供详细文档和示例,支持Python 2和3版本。

machine-learning - 机器学习与数据科学教程,深度学习、模型部署与强化学习
Githubmachine-learning开源项目强化学习时间序列模型部署深度学习
本项目持续更新,介绍了数据科学和机器学习各个主题。内容涵盖深度学习、模型部署、运筹学和强化学习等,提供Jupyter Notebook格式教程,结合Python科学栈(如numpy、pandas)和开源库(如scikit-learn、TensorFlow、PyTorch)进行教学示范,平衡数学符号与实际应用。
Hypernets - 自动机器学习通用框架 支持多种算法与优化技术
AutoMLGithubHypernets开源项目机器学习神经架构搜索超参数优化
Hypernets作为一个通用AutoML框架,能够为多种机器学习框架和库提供自动优化工具。它不仅支持TensorFlow、Keras、PyTorch等深度学习框架,还兼容scikit-learn、LightGBM、XGBoost等机器学习库。该框架集成了多种先进的单目标和多目标优化算法,并引入抽象搜索空间表示,满足超参数优化和神经架构搜索的需求,从而适应各类自动机器学习场景。
hivemind - 去中心化的分布式深度学习PyTorch库
GithubHivemindPyTorch分布式训练开源项目深度学习神经网络
Hivemind是一个基于PyTorch的去中心化深度学习库,旨在通过多台分布在不同地点的计算机共同训练大型模型。主要特点包括去中心化的分布式训练、容错反向传播、参数去中心化平均以及支持任意大小的神经网络训练。Hivemind兼容Linux、macOS和Windows系统,可通过pip或源码进行安装,并提供PyTorch Lightning集成及详尽的使用文档和示例。
hi-ml - 医疗和生命科学深度学习研究智能工具包
AzureGithub人工智能医疗健康开源项目机器学习深度学习
hi-ml是一个面向医疗和生命科学领域的机器学习工具包,提供经过测试的组件、深度学习模型和云集成工具。该项目包含hi-ml-azure用于AzureML集成、hi-ml提供ML组件,以及hi-ml-cpath用于处理组织病理学图像。这些工具旨在简化深度学习模型的开发流程,适用于该领域的研究人员和从业者。
VectorHub - 免费开源的向量检索学习平台与工具
GithubVDB 比较工具VectorHub向量检索开源开源项目机器学习
VectorHub是一个免费开源的学习平台,旨在帮助用户将向量检索技术集成到机器学习堆栈中。用户可以在这里找到实用资源,用于创建最小可行产品(MVP),解决特定用例中的挑战,了解和选择合适的向量数据库供应商。VectorHub还提供了一个免费工具,用于比较不同向量数据库的特性,确保在生产环境中的应用效果。
scrapy - 开源Python网络爬虫和数据提取框架
GithubPythonScrapy开源框架开源项目数据抓取网络爬虫
Scrapy是一个基于BSD许可的高效网络爬虫和结构化数据提取框架。它使用Python 3.8+开发,支持Linux、Windows、macOS和BSD等多种操作系统。Scrapy适用于数据挖掘、网站监控和自动化测试等多种场景。项目提供全面的文档和活跃的社区支持,同时也有商业支持选项。作为开源项目,Scrapy欢迎开发者贡献,并严格遵守行为准则。目前,已有众多知名企业将Scrapy应用于大规模网络数据采集工作。
h2o-tutorials - H2O-3教程与培训素材
AutoMLGithubH2OPythonR开源项目教程
提供最新的H2O-3教程和培训资源,涵盖R和Python的多个主题,如深度学习、网格搜索和自动建模等。可在此查找详细的相关指南和示例,获取历年重要培训活动的材料,确保教程兼容H2O最新稳定版本。问题和反馈可通过Stack Overflow或H2O Stream Google Group讨论和提交。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
SDV - 使用机器学习生成高质量合成数据,提高隐私保护
GithubPythonSDVSynthetic Data Vault开源项目数据生成机器学习
SDV利用多种机器学习算法,提供生成表格合成数据的解决方案。主要功能包括生成单表、多表和序列数据,支持数据预处理、匿名化和逻辑约束定义。此外,SDV还提供数据评估和可视化工具,比较合成数据与真实数据,并生成质量报告。适合初学者和资深数据科学家,满足多样化需求。
applied-ml - 精选数据科学与机器学习应用案例研究和博客
Github开源项目推荐系统数据工程数据质量机器学习特征存储
通过精选的论文、文章和博客,学习企业如何实施数据科学与机器学习项目。了解不同公司对问题的定义、所采用的机器学习技术、背后的科学原理,以及所取得的商业成果,以便更好地评估投资回报。同时还包括最新的机器学习研究进展和实用指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号