Project Icon

stsb-bert-tiny-openvino

基于BERT的轻量级句子相似度和语义搜索模型

stsb-bert-tiny-openvino是一个轻量级的自然语言处理模型,基于sentence-transformers框架开发。模型将文本映射为128维向量,可用于文本相似度分析、聚类和语义检索。支持sentence-transformers和HuggingFace两种调用方式,配备完整的使用示例和文档。通过CosineSimilarityLoss训练优化,在保持高效处理能力的同时确保了模型的轻量化。

msmarco-distilbert-dot-v5 - 用于语义搜索的句子嵌入模型
DistilBERTGithubHuggingfaceMS MARCOsentence-transformers句子转换器开源项目模型语义搜索
msmarco-distilbert-dot-v5是一个基于sentence-transformers的语义搜索模型。它将文本映射到768维向量空间,在MS MARCO数据集上训练。支持sentence-transformers和HuggingFace Transformers库,可进行文本编码和相似度计算。该模型在语义搜索任务中表现优秀,为自然语言处理提供有力支持。
distilbert-base-uncased-finetuned-sst-2-english-openvino - 基于DistilBERT的情感分析模型 OpenVINO优化版达91.3%准确率
DistilBERTGithubHuggingfaceOpenVINO开源项目情感分析文本分类模型模型微调
本项目基于DistilBERT模型,在SST-2数据集上微调后转换为OpenVINO格式,专注于文本情感分类。模型在开发集上的准确率达91.3%,并支持通过Transformers pipeline快速部署。OpenVINO优化提升了推理效率,使其更适合生产环境中的情感分析应用。项目提供了简单的使用示例,方便开发者快速集成和应用。
msmarco-distilbert-base-v3 - 基于DistilBERT的文本向量化模型支持语义搜索与文本聚类
DistilBertGithubHuggingfacesentence-transformers向量映射开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-v3是一个文本向量化模型,可将文本转换为计算机可理解的向量形式。基于sentence-transformers框架开发,主要应用于文本相似度计算、语义搜索和文本聚类等场景。该模型采用轻量级的DistilBERT架构,在保持性能的同时提高了处理效率。
msmarco-distilbert-base-dot-prod-v3 - 基于DistilBERT的向量化文本映射与相似度计算模型
GithubHuggingfacesentence-transformers句子相似度向量嵌入开源项目模型自然语言处理语义搜索
msmarco-distilbert-base-dot-prod-v3是一个开源的sentence-transformer模型,通过将文本映射为768维向量实现语义表示。模型采用点积方法计算文本相似度,支持语义搜索和文本聚类功能。集成sentence-transformers框架,可快速部署并应用于实际场景。该模型在句子嵌入基准测试中表现出色,适用于多种自然语言处理任务。
tiny-bert-sst2-distilled - 轻量级BERT文本情感分类模型
BERTGithubHuggingface开源项目数据集微调文本分类机器学习模型模型训练
tiny-bert-sst2-distilled模型通过对BERT基础版本进行蒸馏优化,专注于文本情感分类任务。该模型在SST-2评估集上达到83.26%的准确率,保持了不错的性能表现。模型架构采用2层transformer结构,隐藏层维度为128,具有轻量化特点,适合在计算资源有限的环境中部署使用。
distilbert-base-nli-stsb-mean-tokens - 基于DistilBERT的句子向量生成模型
GithubHuggingfacesentence-transformers句子嵌入开源项目模型特征提取自然语言处理语义相似度
distilbert-base-nli-stsb-mean-tokens是一个基于DistilBERT的句子转换模型,可将文本映射到768维向量空间。它主要用于聚类和语义搜索,通过sentence-transformers库易于使用。虽然已被标记为过时,但对理解句子嵌入技术仍有参考价值。该模型能将句子和段落转化为密集向量,为自然语言处理任务提供基础。
BioBERT-mnli-snli-scinli-scitail-mednli-stsb - 基于BioBERT的多领域句子嵌入模型
BioBERTGithubHuggingfacesentence-transformers嵌入向量开源项目模型自然语言处理语义相似度
该项目是一个基于BioBERT的句子嵌入模型,通过多个领域数据集训练而成。模型能将文本映射至768维向量空间,适用于聚类和语义搜索等任务。它不仅在生物医学领域表现出色,还可应用于其他文本分析场景。模型支持sentence-transformers和HuggingFace Transformers两种调用方式,为用户提供了便捷的使用体验。
bert-small - 轻量级BERT模型用于下游NLP任务优化
BERTGithubHuggingface人工智能开源项目模型知识蒸馏自然语言处理预训练模型
bert-small是Google BERT官方仓库转换的小型预训练模型,属于紧凑型BERT变体系列。该模型采用4层结构和512维隐藏层,为自然语言处理研究提供轻量级解决方案。在自然语言推理等任务中,bert-small展现出优秀的泛化能力,有助于推进NLI研究beyond简单启发式方法。作为下游任务优化的理想选择,bert-small为NLP领域带来新的研究与应用可能。
msmarco-bert-base-dot-v5 - BERT语义搜索模型 用于高效文本编码和相似度计算
BERTGithubHuggingfaceMS MARCO数据集sentence-transformers嵌入向量开源项目模型语义搜索
msmarco-bert-base-dot-v5是一个语义搜索模型,基于sentence-transformers框架开发。该模型将文本映射到768维向量空间,在MS MARCO数据集上训练而成。它能高效进行文本编码和相似度计算,支持通过sentence-transformers或HuggingFace Transformers库集成使用。这个模型适用于语义搜索等多种自然语言处理任务,为开发者提供了便捷的文本分析工具。
bert-base-uncased-sst2-unstructured80-int8-ov - BERT模型的非结构化剪枝与量化优化技术
BERTGLUE SST2GithubHuggingfaceOpenVINO开源项目模型蒸馏量化
该项目通过非结构化幅度剪枝、量化和蒸馏,在GLUE SST2数据集上优化了BERT模型。模型在Torch和OpenVINO IR模式下准确率达到0.9128,并在Transformer层中实现了80%的稀疏性。此项目适用于OpenVINO 2024.3.0及以上版本及Optimum Intel 1.19.0及更高版本,利用NNCF完成优化,同时提供详细的参数与训练步骤,以实现高效的文本分类。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号