Project Icon

all-MiniLM-L6-v1

基于MiniLM的神经网络句子编码模型

all-MiniLM-L6-v1是基于transformer架构的句子编码模型,能将文本转换为384维向量表示。该模型在10亿规模的句子数据集上采用对比学习方法训练,适用于文本聚类和语义检索等自然语言处理任务。模型同时支持sentence-transformers和Hugging Face两个主流框架,便于开发者快速集成和部署。

paraphrase-xlm-r-multilingual-v1 - 多语言句子嵌入模型 生成768维向量用于相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于sentence-transformers的多语言句子嵌入模型。该模型将句子和段落映射到768维向量空间,适用于聚类和语义搜索等任务。模型支持多语言输入,可通过简单的Python代码调用。它基于XLM-RoBERTa架构,采用平均池化方法生成句子嵌入。模型性能可在Sentence Embeddings Benchmark网站查看评估结果。
distiluse-base-multilingual-cased-v2 - 多语言句子向量模型 适用于60多种语言的语义分析
GithubHuggingfacesentence-transformers句子相似度向量空间多语言模型开源项目模型语义搜索
distiluse-base-multilingual-cased-v2是一款多语言句子转换模型,能将文本转化为512维向量。支持60多种语言,可用于文本聚类和语义搜索。通过sentence-transformers库即可快速部署使用。该模型在句子嵌入基准测试中表现优异,为多语言自然语言处理提供了有力支持。
sentence-transformers-multilingual-e5-small - 多语言句子相似性和分类模型,覆盖多种语言选择
AmazonReviewsGithubHuggingfacemultilingual-e5-small分类句子相似性多语言开源项目模型
该项目提供多语言句子相似性和分类功能,适用范围广泛。采用MIT许可证,通过英语、德语、法语、西班牙语和中文等语言实现较高的精准度。通过Amazon反事实分类和情感极性任务表现出色,涵盖丰富的数据集和评估任务,如重排序和语义文本相似等,有效支持文本分类及自动化分析。
nli-distilroberta-base-v2 - sentence-transformers模型实现句子向量化和语义分析
GithubHuggingfaceRoBERTasentence-transformers向量嵌入开源项目模型自然语言处理语义搜索
nli-distilroberta-base-v2是一个基于sentence-transformers的句子嵌入模型,将文本映射到768维向量空间。该模型适用于聚类、语义搜索等任务,使用简单且效果出色。它支持通过几行代码生成句子嵌入,为自然语言处理提供了有力工具。
ms-marco-MiniLM-L-12-v2 - 跨编码器模型实现高效信息检索与段落排序
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型自然语言处理
ms-marco-MiniLM-L-12-v2是为MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现优异,能够高效编码和排序查询与段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,模型分别达到74.31的NDCG@10和39.02的MRR@10。每秒处理960个文档的速度使其在准确性和效率间实现了良好平衡,适用于各类信息检索应用场景。
xlm-r-bert-base-nli-stsb-mean-tokens - XLM-RoBERTa句子嵌入模型支持多语言语义相似度和文本聚类
GithubHuggingfacesentence-transformers句子嵌入开源项目模型特征提取自然语言处理语义相似度
这是一个基于XLM-RoBERTa的句子嵌入模型,将句子和段落映射到768维密集向量空间。支持多语言,适用于语义搜索和文本聚类等任务。可通过sentence-transformers或Hugging Face Transformers库轻松使用。需注意,该模型已被弃用,建议使用更新的句子嵌入模型以获得更好性能。
LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised - LLM2Vec-Meta-Llama-3-8B模型——文本嵌入与语义相似度的高效工具
GithubHuggingfaceLLM2Vec-Meta-Llama-3-supervised分类句子相似度开源项目文本检索模型特征提取
LLM2Vec-Meta-Llama-3-8B-Instruct-mntp项目提供了创新的文本嵌入技术,支持文本分类、信息检索、重排序和聚类等多种任务。通过其监督模型,有效提升精度和召回率,如在Amazon反事实分类任务中准确率达79.94%,在ArguAna数据集的检索任务中各项指标优异。此项目在多种自然语言处理中展现出显著应用潜力,是评价文本语义相似度的关键工具。
low-law-emb - 高维度句子嵌入模型实现精准语义搜索和文本聚类
GithubHuggingfacesentence-transformers嵌入模型开源项目机器学习模型自然语言处理语义相似度
iMEmbeddings是基于sentence-transformers框架开发的句子嵌入模型,将文本映射至384维向量空间。该模型适用于语义搜索、文本聚类等任务,具有使用简便、评估详尽的特点。模型采用MultipleNegativesRankingLoss损失函数和AdamW优化器,通过Transformer、Pooling和Normalize层构建,可高效处理多种自然语言处理需求。
sentence-t5-large - 将句子和段落转化为768维向量的自然语言处理模型
GithubHuggingfacesentence-transformers句子相似度向量空间开源项目文本编码模型语义搜索
sentence-t5-large是一个基于sentence-transformers的自然语言处理模型,能够将句子和段落转换为768维向量。这个模型在句子相似性任务中表现出色,但在语义搜索方面效果一般。它是由TensorFlow的st5-large-1模型转换而来,采用T5-large模型的编码器,并以FP16格式存储权重。使用时需要sentence-transformers 2.2.0或更高版本。该模型在句子嵌入基准测试中取得了良好成绩,为各种自然语言处理任务提供了有力支持。
multilingual-e5-small - 多语言句子嵌入模型支持100多种语言
GithubHuggingface分类句子转换器多语言开源项目检索模型聚类
multilingual-e5-small是一个支持100多种语言的句子嵌入模型。该模型在MTEB基准测试的分类、检索、聚类等任务中表现良好,适用于跨语言文本匹配和相似度计算。作为轻量级模型,它可在信息检索、文本分类和机器翻译等领域发挥作用,同时保持较低的计算资源需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号