Project Icon

msmarco-MiniLM-L12-cos-v5

用于语义搜索的句子转换和嵌入模型

msmarco-MiniLM-L12-cos-v5是一个专为语义搜索设计的句子转换模型,能将文本映射到768维向量空间。该模型在MS MARCO数据集上训练,支持通过sentence-transformers和HuggingFace Transformers两种方式使用。它生成规范化嵌入,适用于多种相似度计算方法,可用于开发高效的语义搜索应用。

gtr-t5-large - 基于T5-large的语义搜索模型 实现句子到768维向量的映射
GithubHuggingfaceT5模型sentence-transformers向量嵌入开源项目模型自然语言处理语义搜索
gtr-t5-large是一个基于sentence-transformers框架的语义搜索模型,能够将句子和段落映射到768维的向量空间。该模型由TensorFlow版本的gtr-large-1转换而来,仅使用T5-large模型的编码器部分,并以FP16格式存储权重。gtr-t5-large提供简便的接口,可轻松生成文本嵌入,适用于多种自然语言处理任务,如语义相似度计算和信息检索。
roberta-base-nli-stsb-mean-tokens - RoBERTa句子嵌入模型实现语义搜索与文本聚类
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
roberta-base-nli-stsb-mean-tokens是一个基于RoBERTa的句子嵌入模型,可将文本映射至768维向量空间。该模型适用于语义搜索和文本聚类等任务,支持通过sentence-transformers或Hugging Face Transformers库调用。虽然已被更新模型取代,但它仍展示了句子嵌入技术的核心原理和应用场景。
low-law-emb - 高维度句子嵌入模型实现精准语义搜索和文本聚类
GithubHuggingfacesentence-transformers嵌入模型开源项目机器学习模型自然语言处理语义相似度
iMEmbeddings是基于sentence-transformers框架开发的句子嵌入模型,将文本映射至384维向量空间。该模型适用于语义搜索、文本聚类等任务,具有使用简便、评估详尽的特点。模型采用MultipleNegativesRankingLoss损失函数和AdamW优化器,通过Transformer、Pooling和Normalize层构建,可高效处理多种自然语言处理需求。
distilbert-multilingual-nli-stsb-quora-ranking - DistilBERT多语言句子嵌入模型实现高效语义搜索和相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于DistilBERT的多语言句子嵌入模型,能将文本映射到768维向量空间。模型经NLI、STS-B和Quora数据集训练,支持多语言处理,适用于语义搜索、相似度计算和文本聚类等任务。通过sentence-transformers或Hugging Face Transformers,开发者可轻松将其集成到各类自然语言处理应用中,实现高效的文本分析和处理。
sentence-t5-base - 基于T5架构的句子编码模型用于文本相似度分析
GithubHuggingfacesentence-t5-basesentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
sentence-t5-base是一个基于T5架构的句子编码模型,能将文本映射到768维向量空间。该模型在句子相似度任务中表现优异,但语义搜索效果一般。它由TensorFlow版本转换而来,可通过sentence-transformers库轻松使用。模型仅包含T5-base的编码器部分,权重采用FP16格式存储。使用时需要sentence-transformers 2.2.0及以上版本。这个模型适用于多种自然语言处理应用场景,尤其是文本相似度分析。
MS-MARCO-Web-Search - 大规模网络数据集推动搜索与机器学习研究进展
GithubMS MARCO Web Search信息检索开源项目搜索引擎数据集机器学习
MS-MARCO-Web-Search是一个基于ClueWeb22的大规模网络数据集,包含数百万真实查询点击标签。它提供丰富的文本、视觉和语义信息,设置了嵌入模型、嵌入检索和端到端检索三个挑战任务。该数据集旨在推动机器学习和信息检索系统研究,并验证方法在大规模数据上的有效性。
build_MiniLLM_from_scratch - 小规模参数LLM构建指南,支持多轮对话与聊天模型
GithubTorch4kerasbert4torchbuild_MiniLLM_from_scratch开源项目指令微调预训练
该项目详细介绍了如何从零开始构建小规模参数的语言模型(LLM),经过预训练、指令微调、奖励模型和强化学习四个阶段。项目基于bert4torch训练框架,优化内存占用,并提供完整的训练日志以供复现。模型支持与transformers兼容,能够进行多轮对话。项目也开源了预训练语料和权重,方便用户下载和使用,提升了实用性与操作性。
open-text-embeddings - 使用多源模型的OpenAI API兼容文本向量生成工具
GithubLangChainOpenAI APIembeddingsopen-text-embeddingssentence-transformers开源项目
该项目创建了与OpenAI API兼容的文本向量生成端点,支持多种开源句子转换模型,包括BAAI/bge-large-en、intfloat/e5-large-v2、sentence-transformers等。提供详细的本地和云端部署指南,方便用户在多种环境下运行服务器,实现高效查询与存储。用户也可通过Colab在线测试,体验开源文本向量生成的便捷性。
llm-toys - 微调小型语言模型实现多任务处理
Githubllm-toys任务微调低资源模型对话摘要开源项目语气变化
llm-toys 项目提供适用于释义、语气转换、对话总结和主题生成等任务的小型量化3B和7B语言模型。这些经过微调的模型能在普通消费级硬件上高效运行,并通过简单的安装步骤提升文本处理和生成能力。
MINI_LLM - 完整中文大语言模型训练流程实践
DPOGithubMini-llm大模型开源项目微调预训练
MINI_LLM项目展示了完整的中文大语言模型训练流程,涵盖预训练、SFT指令微调和DPO优化阶段。该项目基于QWEN模型,利用多种数据集训练出1.4B参数规模的模型。项目详细介绍了数据处理方法、提供训练脚本,并包含多GPU训练指南,为中文大语言模型开发提供了实用参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号