Project Icon

msmarco-distilbert-base-v3

基于DistilBERT的文本向量化模型支持语义搜索与文本聚类

msmarco-distilbert-base-v3是一个文本向量化模型,可将文本转换为计算机可理解的向量形式。基于sentence-transformers框架开发,主要应用于文本相似度计算、语义搜索和文本聚类等场景。该模型采用轻量级的DistilBERT架构,在保持性能的同时提高了处理效率。

roberta-base-nli-mean-tokens - RoBERTa句子嵌入模型实现文本向量化映射
GithubHuggingfaceRoBERTasentence-transformers向量嵌入开源项目模型自然语言处理语义相似度
roberta-base-nli-mean-tokens是一个基于sentence-transformers的句子嵌入模型,可将文本映射至768维向量空间。该模型基于RoBERTa架构,采用平均池化策略,适用于聚类和语义搜索等任务。虽然已被更新的模型取代,但其实现方法仍有参考价值。开发者可通过sentence-transformers或Hugging Face Transformers库轻松使用该模型生成文本嵌入。
stsb-bert-tiny-safetensors - 轻量级BERT模型用于生成高质量句子嵌入
GithubHuggingfacesentence-transformers向量空间嵌入模型开源项目模型语义搜索语义相似度
stsb-bert-tiny-safetensors是一个基于sentence-transformers的轻量级BERT模型,将句子和段落映射到128维向量空间。它适用于聚类和语义搜索等任务,提供简单API,支持sentence-transformers和HuggingFace Transformers库集成。该模型在STS基准测试中表现良好,能够生成高质量的句子嵌入。
ms-marco-MiniLM-L-4-v2 - MS Marco跨编码器模型优化信息检索和段落排序效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型评估自然语言处理
ms-marco-MiniLM-L-4-v2是一款针对MS Marco段落排序任务优化的跨编码器模型。在TREC DL 19和MS Marco开发集评测中,该模型的NDCG@10和MRR@10分别达到73.04和37.70,展现出优秀性能。它适用于查询-段落匹配和重排序等信息检索任务,每秒可处理2500个文档,在效率和性能间取得良好平衡。研究人员可通过Transformers或SentenceTransformers库轻松应用此模型。
msmarco-MiniLM-L12-en-de-v1 - 基于MS MARCO的英德双语文本重排序模型
GithubHuggingfaceMS Marco信息检索开源项目德英翻译模型自然语言处理跨语言检索模型
基于MS MARCO数据集开发的英德双语跨编码器模型,主要用于文本段落重排序。模型在TREC-DL19评测中NDCG@10分别达到72.94(英-英)和66.07(德-英),在GermanDPR数据集上MRR@10为49.91。支持SentenceTransformers和Transformers框架,处理速度为900对文档/秒,适用于跨语言信息检索场景。
cocodr-base-msmarco - 零样本文本检索与分布鲁棒学习模型
BEIRCOCO-DRGithubHuggingface向量相似度开源项目模型模型预训练自然语言处理
COCODR是一个基于BERT-base架构的文本检索模型,通过BEIR语料库预训练和MS MARCO数据集微调而成。模型采用对比学习和分布鲁棒学习方法,解决零样本密集检索中的分布偏移问题。借助HuggingFace transformers框架,模型可用于文本嵌入和相似度计算。
distilroberta-base - DistilRoBERTa:轻量高效的英语语言模型
DistilRoBERTaGithubHuggingface开源项目机器学习模型模型蒸馏自然语言处理语言模型
DistilRoBERTa-base是RoBERTa-base的精简版本,采用与DistilBERT相同的蒸馏技术。模型包含6层结构,768维向量和12个注意力头,总参数量为8200万,比原版减少33%。在保持相近性能的同时,处理速度提升一倍。主要应用于序列分类、标记分类和问答等下游任务的微调。该模型在英语处理上表现优异,但使用时需注意其可能存在的偏见和局限性。
roberta-large-nli-stsb-mean-tokens - 基于RoBERTa的大规模语义相似度计算和文本嵌入模型
GithubHuggingfacesentence-transformers向量化开源项目模型模型嵌入自然语言处理语义相似度
这是一个基于RoBERTa的sentence-transformers模型,可将文本映射至1024维向量空间。它支持句子相似度计算、文本聚类和语义搜索等任务,并提供简便的API接口。该模型可通过sentence-transformers或HuggingFace Transformers库使用,便于获取文本嵌入。然而,由于性能已过时,建议采用更新的预训练模型替代。
ms-marco-MiniLM-L-12-v2 - 跨编码器模型实现高效信息检索与段落排序
Cross-EncoderGithubHuggingfaceMS MarcoSentenceTransformers信息检索开源项目模型自然语言处理
ms-marco-MiniLM-L-12-v2是为MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现优异,能够高效编码和排序查询与段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上,模型分别达到74.31的NDCG@10和39.02的MRR@10。每秒处理960个文档的速度使其在准确性和效率间实现了良好平衡,适用于各类信息检索应用场景。
ms-marco-MiniLM-L-6-v2 - 高性能跨编码器模型用于信息检索和文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
ms-marco-MiniLM-L-6-v2是一款针对MS Marco段落排序任务开发的跨编码器模型。该模型在信息检索领域表现卓越,能够高效编码和排序查询与文本段落。在TREC Deep Learning 2019和MS Marco Passage Reranking数据集评测中,模型展现出优异性能,NDCG@10和MRR@10分别达到74.30和39.01。ms-marco-MiniLM-L-6-v2兼顾效率与准确性,每秒可处理1800个文档,为信息检索应用提供了实用解决方案。
MiniLM-L6-Keyword-Extraction - 高效句子嵌入模型,用于语义搜索与信息聚类
GithubHuggingFaceHuggingfacesentence-transformers句子相似性对比学习开源项目模型语义搜索
此项目通过自监督对比学习,训练出可将句子和段落转化为384维向量的模型,适用于语义搜索、信息检索和句子相似度任务。模型基于1B句子对数据集微调,利用TPU v3-8进行训练,并在Hugging Face社区活动期间开发。用户可使用sentence-transformers或HuggingFace Transformers实现多种自然语言处理应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号