Project Icon

paraphrase-MiniLM-L12-v2

sentence-transformers模型用于生成384维句子嵌入向量

paraphrase-MiniLM-L12-v2是一个sentence-transformers模型,将句子和段落映射到384维向量空间。适用于聚类和语义搜索,支持通过sentence-transformers或Hugging Face Transformers库使用。该模型在Sentence Embeddings Benchmark上表现良好,采用Transformer和Pooling架构处理文本并生成句子嵌入。

GIST-all-MiniLM-L6-v2 - 多语言句子相似度和特征提取模型
GithubHuggingfacesentence-transformers开源项目文本相似度模型模型评估深度学习自然语言处理
GIST-all-MiniLM-L6-v2是一个用于句子相似度计算和特征提取的模型。该模型在MTEB基准测试中表现优异,涵盖分类、检索、聚类和语义文本相似度等任务。支持多语言处理,适用于文本分类、信息检索和语义搜索等自然语言处理应用。其轻量高效的特性适合需要高性能句子嵌入的项目。
nli-distilroberta-base-v2 - sentence-transformers模型实现句子向量化和语义分析
GithubHuggingfaceRoBERTasentence-transformers向量嵌入开源项目模型自然语言处理语义搜索
nli-distilroberta-base-v2是一个基于sentence-transformers的句子嵌入模型,将文本映射到768维向量空间。该模型适用于聚类、语义搜索等任务,使用简单且效果出色。它支持通过几行代码生成句子嵌入,为自然语言处理提供了有力工具。
all-MiniLM-L6-v2-onnx - 高效文本嵌入和相似度搜索的ONNX解决方案
FastEmbedGithubHuggingfaceONNXsentence-transformers开源项目文本分类模型相似度搜索
all-MiniLM-L6-v2模型的ONNX版本是一个用于文本分类和相似度搜索的工具。该模型与Qdrant兼容,支持IDF修饰符,并可通过FastEmbed库进行推理。它能生成文本嵌入向量,适用于多种自然语言处理任务,尤其在需要进行文本相似度比较的场景中表现优异。使用该模型可以简化文本处理流程,提高相关应用的效率。
sentence-transformers - 多语言文本和图像嵌入向量生成框架
GithubSentence Transformers向量表示开源项目深度学习自然语言处理预训练模型
sentence-transformers是一个基于transformer网络的框架,用于生成句子、段落和图像的向量表示。该项目提供了多语言预训练模型,支持自定义训练,适用于语义搜索、相似度计算、聚类等场景。这个开源工具在自然语言处理和计算机视觉任务中表现出色,为研究人员和开发者提供了便捷的嵌入向量生成方案。
text2vec-base-chinese-paraphrase - 中文语义匹配模型实现句子和段落的向量表示
CoSENTGithubHuggingfaceernie-3.0-base-zhtext2vec句子嵌入开源项目模型语义匹配
text2vec-base-chinese-paraphrase模型采用CoSENT方法训练,将句子映射至768维向量空间。该模型在中文自然语言推理测试中表现出色,适用于句子嵌入、文本匹配和语义搜索等任务。它基于ERNIE 3.0模型微调,使用精选中文STS数据集训练,尤其擅长句子与段落间的语义匹配。模型支持最大256个token的输入,为中文文本处理提供了高效的语义表示工具。
sentence-transformers-e5-large-v2 - 句子向量化模型实现文本相似度检索和聚类
GithubHuggingfaceembaas APIsentence-transformers句子嵌入开源项目模型自然语言处理语义搜索
sentence-transformers-e5-large-v2模型是intfloat/e5-large-v2的改进版本,能将文本映射至1024维向量空间。该模型在聚类和语义搜索方面表现出色,支持通过sentence-transformers库或embaas API快速集成。模型在MTEB评测中获得优异成绩,为文本嵌入和相似度计算提供了有力支持。
MiniLM-L12-H384-uncased - 轻量快速的预训练语言模型实现BERT级别性能表现
BERTGithubHuggingfaceMiniLM开源项目模型模型压缩深度学习自然语言处理
MiniLM-L12-H384-uncased通过模型压缩技术将参数量降至33M,在保持与BERT相当性能的同时,运行速度提升2.7倍。模型在SQuAD 2.0和GLUE等自然语言理解任务中表现出色,可直接替代BERT,适用于对模型体积和运行效率敏感的场景。
sentence-t5-large - 将句子和段落转化为768维向量的自然语言处理模型
GithubHuggingfacesentence-transformers句子相似度向量空间开源项目文本编码模型语义搜索
sentence-t5-large是一个基于sentence-transformers的自然语言处理模型,能够将句子和段落转换为768维向量。这个模型在句子相似性任务中表现出色,但在语义搜索方面效果一般。它是由TensorFlow的st5-large-1模型转换而来,采用T5-large模型的编码器,并以FP16格式存储权重。使用时需要sentence-transformers 2.2.0或更高版本。该模型在句子嵌入基准测试中取得了良好成绩,为各种自然语言处理任务提供了有力支持。
all_miniLM_L6_v2_with_attentions - 基于MiniLM的句子相似度搜索增强模型
GithubHuggingfaceMiniLMONNXQdrant句子相似度开源项目模型模型嵌入
基于MiniLM-L6-v2架构开发的句子相似度模型,通过整合注意力权重机制增强了文本搜索能力。模型采用ONNX格式发布,可与FastEmbed库无缝集成,支持稀疏嵌入生成,在大规模文本检索场景中表现出色。该模型针对BM42搜索进行了特别优化,能有效提升检索准确度。
low-law-emb - 高维度句子嵌入模型实现精准语义搜索和文本聚类
GithubHuggingfacesentence-transformers嵌入模型开源项目机器学习模型自然语言处理语义相似度
iMEmbeddings是基于sentence-transformers框架开发的句子嵌入模型,将文本映射至384维向量空间。该模型适用于语义搜索、文本聚类等任务,具有使用简便、评估详尽的特点。模型采用MultipleNegativesRankingLoss损失函数和AdamW优化器,通过Transformer、Pooling和Normalize层构建,可高效处理多种自然语言处理需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号