Project Icon

stsb-roberta-large

已弃用的1024维句子嵌入模型

stsb-roberta-large是一个基于sentence-transformers的已弃用模型,可将句子和段落映射到1024维向量空间。虽不再推荐使用,但它仍可用于聚类和语义搜索任务,并为理解句子嵌入技术提供参考。该模型基于RoBERTa架构,使用平均池化生成句子嵌入,可通过sentence-transformers或HuggingFace Transformers库轻松实现。

sentence-t5-xl - 高维向量映射模型实现句子和段落的精确表示
GithubHuggingfacesentence-transformers开源项目文本向量化模型深度学习自然语言处理语义相似度
sentence-t5-xl是一个基于sentence-transformers框架的模型,可将句子和段落映射为768维向量。它在句子相似度任务中表现优异,但语义搜索效果一般。该模型由TensorFlow的st5-3b-1转换而来,使用T5-3B模型的编码器,以FP16格式存储权重。通过sentence-transformers库,用户可以方便地将其集成到各种自然语言处理项目中。
roberta-base - RoBERTa预训练语言模型用于多种自然语言处理任务
GithubHuggingfaceRoBERTa人工智能开源项目机器学习模型自然语言处理预训练模型
RoBERTa是基于Transformer架构的预训练语言模型,在大规模英文语料上使用掩码语言建模进行训练。它采用动态掩码和大批量训练等优化策略,在GLUE基准测试中表现出色。RoBERTa适用于序列分类、命名实体识别等任务的微调,能学习双向上下文表示,为NLP应用提供强大的特征提取能力。
e5-large-v2 - 多语言文本任务的高性能句子嵌入模型
GithubHuggingfaceSentence Transformers信息检索开源项目文本分类机器学习模型模型自然语言处理
e5-large-v2是一款针对多语言文本任务优化的句子嵌入模型。在MTEB基准测试中,该模型在分类、检索和聚类等多项任务上展现出优秀性能。e5-large-v2能有效处理包括英语在内的多种语言,为自然语言处理领域提供了强大的句子表示能力。该模型可应用于改进文本相似度计算、信息检索等多种实际场景。
ruRoberta-large - 面向俄语的大规模预训练语言模型 具备强大Transformer架构
GithubHuggingfaceTransformersruRoberta-large俄语开源项目模型自然语言处理预训练模型
ruRoberta-large是SberDevices团队开发的俄语预训练语言模型,采用Transformer架构。模型使用BBPE分词器,词典规模为50,257,参数量达3.55亿,在250GB数据集上训练。主要应用于掩码填充任务,为俄语自然语言处理提供基础支持。该模型是俄语预训练模型家族中的一员,旨在推进俄语NLP研究与应用。
xlm-roberta-xxl - 基于2.5TB数据训练的100语言自然语言处理模型
GithubHuggingfaceXLM-RoBERTa-XL多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa-XXL是一个基于2.5TB CommonCrawl数据预训练的多语言Transformer模型,支持100种语言的自然语言处理任务。通过掩码语言建模技术实现句子的双向表示学习,适用于序列分类、标记分类、问答等下游任务的微调,可应用于多语言文本分析和跨语言任务场景。
distilbert-multilingual-nli-stsb-quora-ranking - DistilBERT多语言句子嵌入模型实现高效语义搜索和相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于DistilBERT的多语言句子嵌入模型,能将文本映射到768维向量空间。模型经NLI、STS-B和Quora数据集训练,支持多语言处理,适用于语义搜索、相似度计算和文本聚类等任务。通过sentence-transformers或Hugging Face Transformers,开发者可轻松将其集成到各类自然语言处理应用中,实现高效的文本分析和处理。
stsb-bert-tiny-onnx - 基于BERT的轻量级文本向量化模型
GithubHuggingfacesentence-transformers开源项目文本嵌入模型模型训练自然语言处理语义相似度
这是一个轻量级的文本向量化模型,基于sentence-transformers框架开发。模型可将文本转换为128维向量表示,主要应用于文本聚类和语义搜索。支持通过sentence-transformers和HuggingFace两种方式调用,提供完整的模型评估数据。
sup-simcse-roberta-large - 高级特征提取与自然语言处理的创新解决方案
GithubHuggingfacePrinceton-nlpsup-simcse-roberta-large偏见与风险开源项目模型特征提取语言模型
sup-simcse-roberta-large是由Princeton-nlp开发的基于RoBERTa-large的高级特征提取模型。该模型适用于多种特征提取任务,并在语义文本相似性任务中表现优秀。训练数据来自于MNLI和SNLI数据集。建议用户注意潜在的偏见风险。技术细节可在GitHub或相关论文中找到,通过提供的代码,用户能快速加载和应用该模型于自然语言处理任务。
twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
paraphrase-xlm-r-multilingual-v1 - 多语言句子嵌入模型 生成768维向量用于相似度计算
GithubHuggingfacesentence-transformers向量嵌入多语言模型开源项目模型自然语言处理语义相似度
这是一个基于sentence-transformers的多语言句子嵌入模型。该模型将句子和段落映射到768维向量空间,适用于聚类和语义搜索等任务。模型支持多语言输入,可通过简单的Python代码调用。它基于XLM-RoBERTa架构,采用平均池化方法生成句子嵌入。模型性能可在Sentence Embeddings Benchmark网站查看评估结果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号