Project Icon

span-marker-bert-base-conll2002-es

该模型在命名实体识别中实现高效精确识别

该模型基于conll2002数据集训练,使用bert-base-cased编码器进行命名实体识别。精确度、召回率和F1评分分别为0.8331、0.8074和0.8201。支持直接推理和二次调优,同时具备良好的可读性和效率,是提升实体识别能力的有效工具。

arabic-ner - 阿拉伯语BERT命名实体识别模型支持九大类型
BERTGithubHugging FaceHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语
该阿拉伯语命名实体识别模型基于BERT预训练,可识别9种实体类型,包括人名、组织、地点等。模型使用37.8万标记的语料训练,在3万标记验证集上F1分数达87%。项目提供完整示例,适用于多种阿拉伯语自然语言处理任务。
xlm-roberta-base-ner-silvanus - 基于XLM-RoBERTa的多语言命名实体识别模型
GithubHuggingfaceNERXLM-RoBERTa命名实体识别多语言模型开源项目模型零样本迁移学习
该模型基于xlm-roberta-base在印尼NER数据集上微调而来,可从社交媒体文本中提取位置、日期和时间信息。虽然训练数据为印尼语,但通过零样本迁移学习,模型支持英语、西班牙语、意大利语和斯洛伐克语的信息提取。在验证集上,模型展现出91.89%的精确率、92.73%的召回率和92.31%的F1分数,显示了其在多语言命名实体识别任务中的有效性。
bert-base-chinese-ner - 传统中文BERT模型及自然语言处理工具
CKIP BERTGithubHuggingfacetransformers模型命名实体识别开源项目模型繁體中文自然语言处理
该项目提供传统中文BERT等模型和多功能自然语言处理工具,辅助词性标注、分词和实体识别。建议使用BertTokenizerFast以提高性能。CKIP开发和维护,详情使用说明见GitHub页面。
bert-base-parsbert-ner-uncased - ParsBERT-NER:高性能波斯语命名实体识别模型
BERTGithubHuggingface命名实体识别开源项目机器学习模型波斯语自然语言处理
ParsBERT-NER是一个专门用于波斯语命名实体识别的预训练模型。该模型基于BERT架构,在ARMAN和PEYMA数据集上进行微调,支持识别组织、地点、人名等多种实体类型。在多个波斯语NER基准测试中,ParsBERT-NER展现出卓越性能,F1分数最高达98.79%。研究人员和开发者可通过Hugging Face Transformers库轻松使用这一模型进行波斯语自然语言处理任务。
xlm-roberta-large-ner-hrl - 十种多语言命名实体识别模型,覆盖高资源语言
GithubHuggingfacexlm-roberta-large-ner-hrl命名实体识别多语言开源项目数据集模型模型训练
此模型是基于xlm-roberta-large微调的命名实体识别模型,支持十大高资源语言:阿拉伯语、德语、英语、西班牙语、法语、意大利语、拉脱维亚语、荷兰语、葡萄牙语和中文。具备识别地点、组织和人物三类实体的功能。通过Transformers库的pipeline,可便捷地应用于NER任务。训练数据来自特定时间段的新闻文章,虽然适用于多种场景,但在不同领域的推广性有限。
bert-base-arabic-camelbert-msa-ner - 现代标准阿拉伯语命名实体识别增强
CAMeLBERTCamel工具GithubHuggingface命名实体识别开源项目模型阿拉伯语模型预训练语言模型
项目基于CAMeLBERT模型提升现代标准阿拉伯语的命名实体识别性能,使用ANERcorp数据集进行微调以提高精度。可通过CAMeL Tools组件或transformers管道实现多用例应用。
ner-english-ontonotes - Flair框架英语命名实体识别模型支持18类实体
FlairGithubHuggingface命名实体识别序列标注开源项目机器学习模型自然语言处理
这是一个基于Flair框架的英语命名实体识别模型,能够识别18种实体类型,包括人名、地点和组织等。模型采用Flair embeddings和LSTM-CRF架构,在Ontonotes数据集上的F1分数为89.27%。该模型可应用于多种自然语言处理任务,并且可以通过简单的Python代码实现NER预测。
bert-base-arabic-camelbert-mix-ner - 基于CAMeLBERT Mix的阿拉伯语命名实体识别模型
CAMeLBERT-MixGithubHuggingface命名实体识别开源项目模型自然语言处理阿拉伯语预训练模型
这是一个基于CAMeLBERT Mix模型微调的阿拉伯语命名实体识别模型。该模型使用ANERcorp数据集进行训练,能够识别阿拉伯语文本中的地点等命名实体。用户可通过CAMeL Tools或Transformers pipeline轻松调用。模型在多项自然语言处理任务中表现优异,尤其适合处理现代标准阿拉伯语文本。
bert-base-swedish-cased - 瑞典国家图书馆发布的BERT预训练语言模型用于提升瑞典语文本处理
GithubHuggingfaceHuggingface TransformersSwedish BERT命名实体识别开源项目模型瑞典文献预训练语言模型
瑞典国家图书馆推出的预训练BERT和ALBERT语言模型,适用于瑞典语文本处理。bert-base-swedish-cased采用标准参数优化,适合各种文本源;bert-base-swedish-cased-ner专注于命名实体识别;albert-base-swedish-cased-alpha为尝试版ALBERT模型。全部模型支持大小写区分与整体词遮盖功能,并提供PyTorch版本供下载。
gliner_small-v2.1 - 基于双向Transformer的轻量级通用实体识别模型
GLiNERGithubHuggingface命名实体识别开源项目机器学习模型模型训练自然语言处理
gliner_small-v2.1是一个基于双向Transformer架构的命名实体识别模型,具备识别任意类型实体的能力。这款模型采用166M参数规模,在保持较小资源占用的同时提供灵活的实体识别功能。模型支持英语处理,采用Apache-2.0许可证开源发布。相比传统NER模型的固定实体类型限制和大语言模型的高资源消耗,该模型提供了一个平衡的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号