Project Icon

span-marker-bert-base-conll2002-es

该模型在命名实体识别中实现高效精确识别

该模型基于conll2002数据集训练,使用bert-base-cased编码器进行命名实体识别。精确度、召回率和F1评分分别为0.8331、0.8074和0.8201。支持直接推理和二次调优,同时具备良好的可读性和效率,是提升实体识别能力的有效工具。

thainer-corpus-v2-base-model - 泰语命名实体识别模型,支持地名、人名等信息的高精度识别
GithubHuggingfaceNamed Entity RecognitionWangchanBERTa实体识别模型开源项目模型模型训练泰语
该命名实体识别模型基于Thai NER v2.0语料库训练,专为泰语文本的实体分类而设计。通过WangchanBERTa基础模型训练,提供高精度和F1分数,确保识别结果准确。需要使用自定义代码进行推理以避免错误标签,相关信息和下载链接在HuggingFace Hub提供。
phibert-finetuned-ner - 微调生物文本识别的新模型提升精度与准确性
Adam优化器GithubHuggingfacephibert-finetuned-ner召回率开源项目模型精确度训练损失
phibert-finetuned-ner模型是通过微调dmis-lab的biobert-v1.1而实现的,旨在提高生物文本识别领域的精度和准确性。其在评估数据集上取得了精度0.9238和准确性0.9950。此模型适用于生物医学领域的命名实体识别,优化过程中采用了Adam优化器和线性学习率调度策略,在3个训练纪元中实现了低损失与高精确度。
heBERT_NER - HeBERT: 专为希伯来语设计的命名实体识别和情感分析模型
GithubHeBERTHuggingface命名实体识别开源项目情感分析情感识别情绪用户生成内容模型
HeBERT是一个基于Google BERT架构的希伯来语模型,通过希伯来语OSCAR、维基百科以及情感用户生成内容数据集进行训练。它能够识别希伯来语文本中的人名、组织和地理位置等命名实体,并在测试中表现出色。此外,HeBERT还支持情感识别和情绪分析,研究人员和开发者可以在Huggingface平台上访问此模型。该工具适合需要进行深入希伯来语文本分析的用户。
bert-base-uncased-mrpc - BERT文本语义对比模型在MRPC数据集实现86%准确率
BERTGithubHuggingface开源项目文本分类机器学习模型自然语言处理语义分析
BERT-base-uncased经MRPC数据集微调后的文本语义分析模型,通过双向掩码语言建模实现句子对的语义等价性判断。模型在验证集达到86.03%准确率和90.42% F1分数,具备大小写不敏感特性,可广泛应用于文本语义理解任务。
bertweet-tb2_ewt-pos-tagging - Twitter词性标注模型,提升标注准确性
GithubHuggingfaceTweebankNLPTweetTokenizerTwitter开源项目模型社交媒体分析词性标注
该项目提供了适用于Tweebank V2基准的Twitter词性标注模型,准确率达95.38%,结合Tweebank-NER与English-EWT数据进行训练,支持社交媒体分析。使用前需通过TweetTokenizer进行tweets预处理以获得最佳效果。
bert-base-multilingual-uncased - BERT多语言预训练模型支持102种语言的自然语言处理
BERTGithubHuggingface多语言模型开源项目机器学习模型自然语言处理预训练
bert-base-multilingual-uncased是基于102种语言的维基百科数据预训练的BERT模型。它采用掩码语言建模进行自监督学习,可支持多语言自然语言处理任务。该模型不区分大小写,适用于序列分类、标记分类和问答等下游任务。通过在大规模多语言语料库上预训练,模型学习了多语言的双向语义表示,可通过微调适应特定任务需求。
UniNER-7B-all - 跨多数据集的命名实体识别开源模型
GithubHuggingfaceUniNER命名实体识别大模型开源项目模型研究自然语言处理
UniNER-7B-all模型结合ChatGPT生成的Pile-NER-type和Pile-NER-definition数据及Universal NER基准中40个数据集进行训练,适合多数据集的命名实体识别研究。模型在排除CrossNER和MIT数据集的情况下进行OOD评估。详细的使用指南和模型信息可以通过相关论文及GitHub仓库获得,模型适用于研究目的,遵循CC BY-NC 4.0许可协议。
Medical-NER - DeBERTa微调的医学命名实体识别模型
DeBERTaGithubHuggingfaceNER模型token-classification医学数据集医疗实体识别开源项目模型
该模型基于DeBERTa在PubMED数据集上微调,可识别41种医学实体,如诊断、症状和治疗。它利用先进的自然语言处理技术从医疗文本中准确提取关键信息,支持临床决策和医学研究。模型可通过Hugging Face推理API或transformers库轻松使用,为医疗信息处理提供了便捷工具。
bert-base-spanish-wwm-cased-xnli - 基于XNLI数据集的西班牙语零样本分类模型
BERTGithubHuggingfacePyTorchXNLI开源项目模型自然语言推理零样本分类
这是一个基于西班牙语BERT模型,通过XNLI数据集微调的零样本分类模型,在测试集上达到79.9%的准确率。该模型可通过Hugging Face平台实现西班牙语文本的多类别分类,支持自定义标签。模型基于MIT许可证开源,适用于文本分类的研究与应用开发。
bert-base-spanish-wwm-cased - 基于大规模语料库训练的西班牙语BERT模型
BETOGithubHuggingface基准测试开源项目模型自然语言处理西班牙语预训练模型
BETO是一个基于大规模西班牙语语料库训练的BERT模型,采用全词遮蔽技术,提供uncased和cased两个版本。在词性标注、命名实体识别和文本分类等多项西班牙语基准测试中,BETO表现优于多语言BERT。研究者可通过Hugging Face Transformers库轻松使用该模型,为西班牙语自然语言处理研究和应用提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号