Project Icon

FsfairX-LLaMA3-RM-v0.1

基于LLaMA-3的开源奖励函数,支持多种RLHF方案的高性能实现

FsfairX-LLaMA3-RM-v0.1是一个基于LLaMA-3开发的强化学习奖励模型。该模型在Reward-Bench测试中取得了Chat 99.44分、Safety 88.76分等优秀成绩,支持PPO等多种人类反馈学习方法。项目提供完整的训练代码和使用示例,有助于开发更安全的AI应用。

reward-model-deberta-v3-large-v2 - 人类反馈训练奖励模型 提升问答评估和强化学习效果
DeBERTaGithubHuggingfaceRLHF人工智能奖励模型开源项目模型语言模型
这个开源项目开发了一种基于人类反馈的奖励模型(RM),能够评估给定问题的答案质量。该模型在多个数据集上进行训练,可应用于问答系统评估、强化学习人类反馈(RLHF)奖励计算,以及有害内容检测等场景。项目提供了详细的使用说明、性能对比和代码示例。其中,DeBERTa-v3-large-v2版本在多项基准测试中展现出优异性能。
reward-bench - 用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性的基准工具
GithubRewardBenchanymodel开源项目数据集文献评价标准
RewardBench是一款基准工具,用于评估使用如Starling、PairRM、OpenAssistant和DPO等算法的奖励模型的能力和安全性。该工具提供通用的推理代码、统一的数据集格式和测试,以确保公平评估,并拥有强大的分析与可视化功能。用户可以通过pip快速安装并运行评估脚本,测试各种奖励模型的性能和偏好集。
open_llama_3b_v2 - 高性能开源大型语言模型复现LLaMA
GithubHuggingfaceOpenLLaMA大语言模型开源复现开源项目性能评估模型模型权重
OpenLLaMA是一个复现Meta AI的LLaMA大型语言模型的开源项目。它提供3B、7B和13B三种规模的模型,使用开源数据集训练了1万亿个标记。该项目采用与原始LLaMA相同的预处理和训练参数,在多项评估中表现出色。OpenLLaMA提供PyTorch和JAX格式的预训练权重,遵循Apache 2.0许可证发布。
safe-rlhf - 北京大学开发的AI安全增强框架
BeaverGithub人工智能安全RLHF开源项目数据集模型训练
Safe RLHF是一个由北京大学PKU-Alignment团队开发的开源框架,整合了SFT、RLHF及Safe RLHF训练方法。它支持多种预训练模型,提供大量人工标注数据,能够训练奖励与成本模型,并采用多层次的安全性校验指标。最新发布的版本提供详尽的复现代码和数据集,旨在增强AI模型的安全性和实用性。
llama-trl - 使用 PPO 和 LoRA 微调 LLaMA
GithubLLaMA-TRLLoRAPPOReward Model TrainingSupervised Fine-tuning开源项目
本项目LLaMA-TRL通过PPO和LoRA技术进行大规模语言模型的微调,采用TRL(变压器强化学习)和PEFT(参数高效微调)方法。本文详细介绍了从安装依赖到具体实现的步骤,包括监督微调、奖励模型训练和PPO微调,助力开发者显著提升模型性能和任务适应能力。
OpenRLHF - 高性能强化学习框架助力大规模语言模型优化
GithubOpenRLHFRLHF框架分布式训练开源项目强化学习模型微调
OpenRLHF是一款基于Ray、DeepSpeed和Hugging Face Transformers构建的高性能强化学习框架。该框架简单易用,兼容Hugging Face模型和数据集,性能优于优化后的DeepSpeedChat。它支持分布式RLHF,能够在多GPU环境下进行70B+参数模型的全规模微调。OpenRLHF集成了多项PPO实现技巧以提升训练稳定性,同时支持vLLM生成加速和多奖励模型等先进特性,为大规模语言模型优化提供了强大支持。
Llama-3-8b-sft-mixture - 基于多样化高质量数据集训练的大语言模型微调检查点
GithubHuggingfaceLLaMA3-SFTRLHF人工智能开源项目机器学习模型语言模型
Llama-3-8b-sft-mixture是基于Meta-Llama-3-8B模型训练的SFT检查点,通过对ShareGPT、Evol-Instruct等九个高质量数据集进行混合训练而成。该模型经过1个epoch的训练,尚未经过RLHF,可作为RLHF研究的理想起点。模型适用于强化学习研究,详细参数可参考相关技术报告。
PairRM - LLM质量提升的Pairwise奖励模型
GithubHuggingfaceLLM评估Pairwise Reward ModelRLHF方法开源项目模型相对质量高效解码
Pairwise Reward Model通过比较一对候选输出对每个候选分配质量评分。该模型可用于有效评估LLM质量,通过对候选输出重新排序,增强LLM输出效果,并支持RLHF方法的指令调整。模型基于microsoft/deberta-v3-large,利用多样化的人类偏好数据集进行训练,性能接近GPT-4,在有限资源下实现高效对齐和质量提升。
Skywork-Reward-Gemma-2-27B - 先进奖励模型展示小数据集训练的潜力
GemmaGithubHuggingfaceLLaMaSkywork Reward Model偏好学习开源项目模型自然语言处理
Skywork-Reward-Gemma-2-27B是基于gemma-2-27b-it架构开发的奖励模型。该模型仅使用80K高质量偏好对数据进行训练,在数学、编程和安全等多个领域的复杂场景偏好判断中表现优异。目前在RewardBench排行榜位居榜首,证明了利用相对小规模数据集和简单数据处理技术也能构建高性能奖励模型。
llama-7b-hf - LLaMA-7B模型在自然语言处理和AI研究中的应用
GithubHuggingfaceLLaMA开源项目模型模型评估自动回归模型自然语言处理补充授权
LLaMA-7B是Meta AI的FAIR团队开发的自回归语言模型,基于转换器架构拥有7B参数,主要用于研究大语言模型的可能性。模型改进了解决EOS标记问题,并通过多数据集如CCNet、C4和Wikipedia进行训练,展现出语言间和方言间的性能差异,适合问答和自然语言理解等应用场景。仅限获授权的非商业研究使用,更多信息请参考Meta AI的研究出版物。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号