Project Icon

a-PyTorch-Tutorial-to-Transformers

PyTorch实现Transformer模型的详细教程与实践指南

本项目提供了一个基于PyTorch的Transformer模型实现教程。教程深入讲解了Transformer的核心概念,如多头注意力机制和编码器-解码器架构,并以机器翻译为例展示应用。内容涵盖模型实现、训练、推理和评估等环节,适合想要深入理解和应用Transformer技术的学习者。

tensorflow-nlp-tutorial - Tensorflow 2.0 自然语言处理实用教程
BERTGithubKoGPT-2NLPTensorflow开源项目딥 러닝
此项目包含一系列基于Tensorflow 2.0的自然语言处理教程。教程内容详细,基于e-Book中的理论,涵盖BERT、KoGPT-2、CTM等模型的文本分类、生成、关键词提取和话题建模实操。用户通过Colab链接即可在线练习,无需额外安装Python。该项目持续更新,提供最新的自然语言处理技术和代码示例。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
audio-transformers-course - Transformers在音频和语音处理中的应用与实践
Audio Transformers CourseGithubHugging Face多语言开源开源项目机器学习
audio-transformers-course是一个开源课程项目,聚焦于Transformers模型在音频和语音处理领域的应用。课程提供多语言版本,内容包括详细教程、代码示例和Jupyter notebooks,适合开发者和研究人员学习音频Transformers技术。项目支持社区参与翻译,致力于推广音频处理的前沿知识。
llms-from-scratch-cn - 动手构建大语言模型的完整教程
DatawhaleGithubLLMs From Scratch人工智能大语言模型开源项目深度学习
本教程提供系统化的学习路径,涵盖基础理论、实际编码、数据处理、注意力机制、预训练和微调,帮助开发者掌握ChatGPT等大型语言模型的核心技术,适合具备一定编程基础的技术人员。
subnet9_track2_1 - Transformer模型使用指南及相关风险和技术限制
GithubHuggingfacetransformers开源项目技术规格模型模型细节环境影响用途
本页面概述Transformer模型的使用说明,包含潜在风险和技术限制,指导用户在直接或下游应用中采用最佳实践,规避偏见和误用。
FLASH-pytorch - FLASH 线性时间内提升Transformer效能的开源实现
FLASHGithubPyTorchTransformer开源项目注意力机制深度学习
FLASH-pytorch是一个开源项目,实现了一种高效的Transformer变体。该项目采用门控注意力单元(GAU)和分组线性注意力,在线性时间内提升模型性能。它提供简洁API,支持自回归和非自回归模式,并整合多种位置编码技术。这一工具使研究人员和开发者能够便捷地探索和应用Transformer的最新优化技术。
llms - 大型语言模型的原理与实践应用全面解析
BERTGPTGithubTransformer开源项目自然语言处理语言模型
本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
time-series-transformers-review - 时序数据建模中的Transformers技术综述
GithubTransformers分类开源项目异常检测时间序列预测
本项目专业整理了Transformers在时序数据建模中的资源,涵盖论文、代码和数据,全面总结其最新进展。内容持续更新,开放问题提交和拉取请求,覆盖时序预测、不规则时序建模、异常检测和分类等领域,适合学术研究及实际应用。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号