Project Icon

sequitur

高效创建和训练序列数据自编码器的Python库

sequitur是一个专为序列数据设计的Python自编码器库。它集成了三种自编码器架构和预设训练循环,使用者只需两行代码即可完成模型构建和训练。该库适用范围广泛,涵盖单变量、多变量时间序列及视频等序列数据,尤其适合快速入门自编码器的开发者。sequitur灵活支持数字、向量和矩阵等多种序列类型,为数据处理提供多样化选择。

fairseq - 序列建模工具包,支持机器翻译与文本生成
FairseqGithubPyTorch序列建模开源项目文本生成机器翻译
Fairseq 是一个序列建模工具包,适用于机器翻译和文本生成。支持多GPU训练,提供灵活配置和扩展能力,以及多种预训练模型和参考实现。内置束搜索和抽样等算法,支持混合精度训练和参数CPU卸载,为研究人员和开发人员提供高效解决方案。
pytorch-seq2seq - 使用PyTorch实现序列到序列模型的教程
GithubPyTorchseq2seq开源项目机器翻译神经网络翻译
该项目提供一系列使用PyTorch实现seq2seq模型的教程,特别是对德语到英语的翻译。教程涵盖了seq2seq网络的基础、编码器-解码器模型、注意机制以及使用spaCy进行数据分词,并提供了详细的代码和示例,帮助学习者深入理解和应用相关技术。
inseq - 基于Pytorch的序列生成模型解释性分析工具
GithubInseqPytorch序列生成开源项目模型解释集成渐变
Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。
lightseq - 基于CUDA的高性能训练与推理库
BERT性能GithubLightSeqTransformer模型序列处理开源项目混合精度训练
LightSeq为基于CUDA的高性能训练与推理库,专为序列处理和生成优化,支持BERT、Transformer等主流模型。最新版本新增int8混合精度功能,显著提升训练与推理效率,完美兼容Fairseq、Hugging Face等框架。
AdaSeq - 完善的序列理解模型开发库,涵盖多种高级任务
AdaSeqGithubModelScopePyTorch命名实体识别序列理解开源项目
AdaSeq是由阿里巴巴达摩院开发的一体化序列理解工具库,构建在ModelScope之上。支持词性标注、分块、命名实体识别、实体类型化、关系抽取等多种任务。提供丰富的前沿模型和训练方法,优于许多现有框架。该库使用简便,只需一行命令即可生成模型,支持自定义模型和数据集。适用于研究人员和开发者,项目处于快速开发阶段,并提供多语言、多领域的数据集和在线演示。
fairseq2 - 先进序列建模工具包 支持多任务自定义模型训练
Githubfairseq2序列建模开源项目机器学习自然语言处理
fairseq2是由Facebook AI Research开发的序列建模工具包,作为fairseq的后续版本,为研究人员和开发者提供了强大的自定义模型训练功能。它支持包括LLaMA系列、Mistral 7B和NLLB-200在内的多种先进模型,可用于翻译、摘要和语言建模等任务。fairseq2提供Linux和macOS的预构建包,兼容多种PyTorch和CUDA版本,为序列建模研究和应用提供了灵活的解决方案。
Sequoia - 可扩展、稳定且硬件感知的推断系统环境
GithubLlamaSequoiagrowmapspeculative decoding开源项目接受率向量
Sequoia项目提供了可扩展、稳定且硬件感知的推断系统环境,支持Llama系列模型,灵活调整温度和Top-p参数,并提供详细的实验再现指南。通过pip命令简便地设置环境,使用bash脚本进行测试,调整示例数量和随机种子来重现结果。Sequoia还具备生成接收率向量和生成树结构图的工具,满足各类实验需求。未来计划包括支持更多开源模型、多轮对话、INT4/8量化以及多GPU功能。
MEGABYTE-pytorch - 多尺度Transformer模型实现百万字节序列预测
AI模型GithubMEGABYTEPytorchTransformer开源项目深度学习
MEGABYTE-pytorch是一个基于PyTorch实现的多尺度Transformer模型,专门用于预测百万字节长度的序列。该项目具有灵活的配置选项,支持多个本地模型,并整合了Flash Attention等先进技术。MEGABYTE-pytorch通过简洁的API接口实现长序列处理、模型训练和文本生成。此外,项目提供了基于enwik8数据集的训练示例,为开发者提供了实用参考。
s4 - 多种序列建模模型的官方实现和实验
GithubHiPPOHydraPyTorchPytorch-LightningS4开源项目
该页面提供多种序列建模模型的官方实现和实验,包括HiPPO、LSSL、SaShiMi、DSS、HTTYH、S4D、S4ND等。内容涵盖相关模型的源代码概述和具体实验复现,并详细说明如何设置环境、训练模型及生成序列。页面还介绍了优化器超参数、数据集管理和实验配置的详细信息,特别适合使用PyTorch和PyTorch-Lightning进行数据和模型训练的用户。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号