Project Icon

SigMF

信号元数据格式标准化 促进跨平台数据共享

SigMF是一种开放的信号元数据格式标准,为信号数据提供统一的描述方法。该标准有助于简化数据共享流程,保存完整的数据采集细节,并支持跨工具的数据互操作。SigMF可在Python、C++和GNU Radio等环境中使用,适用于广泛的信号处理领域。通过标准化元数据格式,SigMF提高了信号数据的可移植性和长期可用性。

Rendered SigMF Logo

SigMF: The Signal Metadata Format

Welcome to the SigMF project! The SigMF specifications can be viewed here or downloaded as a PDF. Below we discuss why and how you might use SigMF in your projects.

Introduction

Sharing sets of recorded signal data is an important part of science and engineering. It enables multiple parties to collaborate, is often a necessary part of reproducing scientific results (a requirement of scientific rigor), and enables sharing data with those who do not have direct access to the equipment required to capture it.

Unfortunately, these datasets have historically not been very portable, and there is not an agreed upon method of sharing metadata descriptions of the recorded data itself. This is the problem that SigMF solves.

By providing a standard way to describe data recordings, SigMF facilitates the sharing of data, prevents the "bitrot" of datasets wherein details of the capture are lost over time, and makes it possible for different tools to operate on the same dataset, thus enabling data portability between tools and workflows.

SigMF signal recordings typically involve a data file (e.g., a binary file of IQ or RF samples) and a metadata file containing plain text that describes the data. Together these files represent one recording, such as example.sigmf-data and example.sigmf-meta. Here is a minimal example of a SigMF .sigmf-meta file:

{
    "global": {
        "core:datatype": "cf32_le",
        "core:sample_rate": 1000000,
        "core:hw": "PlutoSDR with 915 MHz whip antenna",
        "core:author": "Art Vandelay",
        "core:version": "1.2.0"
    },
    "captures": [
        {
            "core:sample_start": 0,
            "core:frequency": 915000000
        }
    ],
    "annotations": []
}

Using SigMF

There are at least four ways you can use SigMF today, thanks to the community-supported projects:

  1. Within Python, using the official SigMF Python package sigmf available from pip: pip install sigmf.
  2. Within C++ using the header-only C++ library libsigmf.
  3. Within GNU Radio using the built-in SigMF source & sink blocks.
  4. Manually, using our examples and the spec itself, even if it's simply editing a text file.

Contributing

The SigMF standards effort is organized entirely within this Github repository. Questions, suggestions, bug reports, etc., are discussed in the issue tracker, feel free to create a new issue and provide your input, even if it's not a traditional issue. Changes to the specification only occur through Pull Requests. This ensures that the history and background of all discussions and changes are maintained for posterity.

There is also a SigMF chat room on GNU Radio's Matrix chat server where you can ask SigMF-related questions, or participate in various discussions. Lastly, there are monthly SigMF calls covering a variety of topics, on the third Monday of each month at 11:30AM Eastern/New York Time, please email marc@gnuradio.org for an invite and Zoom link.

Anyone is welcome to get involved - indeed, the more people involved in the discussions, the more useful the standard is likely to be!

Extensions

The "Core" SigMF standard is intentionally kept limited in scope, additional metadata fields can be added through SigMF Extensions. For example, the signal extension provides a standard way to specify modulation schemes and other attributes of wireless comms signals. Several general purpose canonical extensions live within this repository directly in the extensions directory, while others are maintained by third parties. Below are some popular sources for SigMF extensions. To have your extension reviewed for inclusion on this list, please open a PR adding the repository to the list below:

In general, extension publication pull requests should go into the Community Extension repository. Occasionally there is an extension that is so general purpose that it may be warranted to include in the core SigMF Repository extensions directory. Opening an issue in this repository for discussion (or noting this in a pull request in the Community Extension repository), or discussing on the SigMF Matrix Chat room is the best way to make that happen.

Software that seeks to perform validation on metadata can open a metafile, parse which extensions are used (if any), then pull the core JSON schema plus the JSON schemas for each extension being used (and optionally, an application-specific schema), then merge the global/captures/annotations objects between all schemas, and disable additionalProperties for all three so that typos can be detected.

PDF Generation of Specifications Document

The main pdf is generated using the following content:

  1. sigmf-schema.json - global/captures/annotations tables and descriptions, as well as the Abstract
  2. collection-schema.json - Collection object documentation
  3. additional_content.md - mix of plaintext/markdown/latex for the remaining sections of the document

The script docs-generator.py uses Python, PyLaTeX, Pandoc, and Inkscape to create the specifications document in PDF and HTML formats.

Frequently Asked Questions

Is this a GNU Radio effort?

No, this is not a GNU Radio specific effort. This effort first emerged from a group of GNU Radio core developers, but the goal of the project is to provide a standard that will be useful to anyone and everyone, regardless of tool or workflow.

Is this specific to wireless communications?

No, similar to the response, above, the goal is to create something that is generally applicable to signal processing, regardless of whether or not the application is RF or communications related.

It seems like some issues take a long time to resolve?

Yes, and in most cases this is by design. Since the goal of this project is create a broadly useful standards document, it is in our best interest to make sure we gather and consider as many opinions as possible, and produce the clearest and most exact language possible. This necessarily requires extreme attention to detail and diligence.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号