Project Icon

deberta-v3-large-tasksource-nli

自然语言推理的多任务学习模型,提升零样本分类性能

DeBERTa-v3-large采用多任务学习,涵盖600多项任务,提升零样本分类性能。模型在多个数据集进行了训练,适用于自然语言推理与分类。其共享的编码器和特定CLS嵌入在多种分类任务中展现出色表现,在未调优状态下于WNLI和MNLI中分别达到了77%和90%的准确率,适合科研与实际应用。

CodeBERTa-small-v1 - 基于RoBERTa架构的多语言代码理解模型
CodeBERTaGithubHuggingface代码补全开源项目机器学习模型编程语言识别自然语言处理
CodeBERTa-small-v1是一个基于RoBERTa架构的代码理解模型,在CodeSearchNet数据集上预训练。支持6种主流编程语言,采用字节级BPE分词器高效编码。该模型包含6层结构和8400万参数,可用于代码补全和编程语言识别等任务。CodeBERTa为代码分析和生成提供了有力支持,是开发人员的实用工具。
roberta-large - 大型英语预训练模型,适合多种任务优化
GithubHuggingfaceRoBERTaTransformer模型开源项目模型语言模型遮蔽语言建模预训练模型
RoBERTa是一个自监督学习的变压器模型,通过掩码语言建模(MLM)目标优化英语语言的表示。主要用于细调下游任务,如序列和标记分类以及问答。此模型预训练于包括BookCorpus和Wikipedia在内的五个大型语料库,使用BPE分词法和动态掩码训练,实现双向句子表示,并在GLUE测试中表现优异,适合在PyTorch和TensorFlow中应用。
T0_3B - 小规模T0模型超越GPT-3,进行零样本自然语言任务处理
GithubHuggingfaceT0偏见与公平性开源项目模型模型训练自然语言处理评估数据
T0*模型通过自然语言提示实现零样本任务泛化,性能超越GPT-3,且模型体积缩小至16分之一。该模型在多任务提示数据集中微调,能够针对未见任务做出高效预测。适用于多种推理场景,包括情感分析、句子重排列和词义判断等。其训练数据源自多个数据集并经过严谨评估,保障模型性能可靠性。虽然T0*模型参数较大,但通过优化和并行化方案能够有效应用于多GPU环境。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
deberta-v2-large-japanese-char-wwm - 基于DeBERTa V2的大规模日语预训练语言模型
DeBERTa V2GithubHuggingface字符级tokenization开源项目日语模型自然语言处理预训练模型
deberta-v2-large-japanese-char-wwm是一个基于DeBERTa V2架构的日语预训练语言模型。它采用字符级分词和全词遮蔽技术,在171GB的日语语料库上训练而成。该模型支持掩码语言建模等任务,可直接处理原始文本。经26天训练后,模型在掩码语言建模评估集上达到79.5%的准确率,为日语自然语言处理研究和应用提供了强大工具。
scandi-nli-large - 北欧语言自然语言推理模型的性能分析
GithubHuggingfaceScandiNLI丹麦语开源项目挪威语模型瑞典语自然语言推理
该模型针对丹麦语、挪威语和瑞典语进行了自然语言推理微调,适用于零样本分类任务,拥有多个版本。大模型在语言任务中成绩突出,MCC为73.70%,F1分数为74.44%,准确率达83.91%。基于NbAiLab/nb-bert-large模型,并综合多语言NLI数据集进行训练,实现了对北欧语言的全面支持,适用于多语言自然语言处理。
domain-classifier - 基于DeBERTa V3的多领域文本分类模型
Deberta V3GithubHuggingfaceNeMo CuratorPyTorch开源项目文本分类模型模型领域分类
这是一个基于DeBERTa V3 Base架构的文本分类模型,可将输入内容自动归类至26个不同领域。模型在超过100万个样本上训练,PR-AUC评分达0.9873。支持最多512个token的长文本输入,可通过NeMo Curator或Hugging Face Transformers库轻松集成使用。适用于各类文本内容的自动化领域分类任务。
distilbart-mnli-github-issues - 利用零样本分类优化GitHub问题分类
BART-large-mnliGitHub issues classifierGithubHuggingface开源项目文本分类模型转换器零样本分类
本项目使用零样本分类技术,通过distilbart-mnli模型有效分类GitHub问题,辅以BART-large-mnli教师模型指导,识别特性请求、错误等问题类型,预测一致性达94.82%。该NLP解决方案提升分类准确度,支持自定义训练,适合客户服务和技术支持。项目还提供详细的训练数据与模型选择说明,为用户提供清晰的指导和实际应用案例。
kf-deberta-base - 金融领域专用语言模型展示出色性能
GithubHuggingfaceKF-DeBERTa基准测试开源项目性能模型语言模型金融
KF-DeBERTa基于DeBERTa-v2架构,结合Electra的RTD目标训练,旨在金融和通用领域应用。其在KLUE基准测试上表现突出,超越RoBERTa-Large,并在金融领域任务如情感分析、广告分类和实体识别中展现领先性能,体现出其在财经信息处理中的适用性和精准度。
mdeberta-v3-base-squad2 - 基于DeBERTa V3架构的多语言问答模型
DeBERTaGithubHuggingfaceSQuAD多语言模型开源项目模型自然语言处理问答系统
这是一个支持100多种语言的问答模型,基于DeBERTa V3架构开发。模型在SQuAD2.0数据集上经过微调,F1评分达到84.01%,可实现高质量的文本抽取式问答。采用ELECTRA预训练方法和优化的嵌入技术,适用于多语言自然语言处理任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号