Project Icon

3D-BoundingBox

使用深度学习与几何方法,实现高效的3D边界框估计

项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。

Det3D - 提供多数据集和算法支持的3D目标检测工具箱
3D对象检测Det3DGithubKITTIPointPillarsPyTorch开源项目
Det3D是一款基于PyTorch的3D目标检测工具箱,支持多个数据集如KITTI、nuScenes、Lyft,并实现了多种3D目标检测算法如PointPillars、SECOND、PIXOR等。其特点包括高性能、支持分布式训练和同步批归一化,以及灵活的模型配置和可视化工具。Det3D适合自动驾驶、机器人和增强现实等领域的研究人员和开发者。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
3d-bat - 全面高效的3D全景数据标注工具箱
3D BATGithub多模态数据开源项目标注工具自动驾驶计算机视觉
3D-BAT是一个开源的3D边界框标注工具箱,专门用于全景多模态数据流的处理。该工具支持AI辅助标注、批量编辑和插值模式等功能,实现了3D到2D的标签转换和自动跟踪。作为基于Web的应用,3D-BAT支持在线访问和跨平台使用,并提供了高度的可定制性。这个工具箱为自动驾驶和计算机视觉等领域的研究提供了一个实用的数据标注解决方案。
mmdetection3d - 支持多模态单模态的开源3D目标检测框架
3D目标检测GithubMMDetection3D开源工具箱开源项目点云处理计算机视觉
MMDetection3D是OpenMMLab项目开发的开源3D目标检测框架,基于PyTorch构建。它支持多模态和单模态检测器,适用于室内外3D检测数据集,可与2D检测无缝集成。该框架提供300多种预训练模型、40多种算法实现,以及MMDetection全部功能模块。MMDetection3D不仅可用于研究,还可作为库支持各类3D检测应用开发。
yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
torch-points3d - 用于在点云上进行深度学习的 Pytorch 框架
CUDAGithubPyTorchtorch-points3d开源项目深度学习点云分析
一个用于点云分析的深度学习框架,基于Pytorch Geometric和Facebook Hydra。该框架支持构建复杂模型并提供高层次API,支持PointNet、PointNet++、RSConv等常见模型,便捷实现分类、分割和检测任务。推荐使用Docker安装以确保兼容性。了解更多信息,请查阅文档和示例笔记本。
yolov3-tf2 - YOLOv3的TensorFlow实现,目标检测解决方案
GithubTensorFlow 2.0YoloV3开源项目检测训练预训练权重
该项目采用TensorFlow 2.0实现YOLOv3,提供预训练权重、推理示例和迁移学习功能,支持GPU加速、eager模式和图模式训练,并集成absl-py。用户可以方便地安装、训练和进行实时视频检测,同时支持TF模型导出和Serving。
Open3D - 支持快速开发的3D数据处理开源库
3D数据处理C++ APIGPU加速GithubOpen3DPython API开源项目
支持快速开发3D数据处理应用的开源库,提供C++和Python接口。核心功能包括3D数据结构、3D数据处理算法、场景重建、表面对齐、3D可视化、基于物理的渲染(PBR)、3D机器学习支持(与PyTorch和TensorFlow兼容)、核心3D操作的GPU加速。适用于Ubuntu、macOS和Windows平台,支持源码编译和pip安装。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号