Project Icon

KR-FinBert-SC

金融情感语义分析的最新进展

KR-FinBert-SC利用金融语料库进行预训练和微调,以提高NLP中的情感分析性能。该模型训练涉及韩国维基百科、新闻文章和法律文本等,扩展数据集超过12GB,并添加了经济新闻和证券分析报告以支持迁移学习。在50,000条标记数据中,该模型的情感分类准确率达到96.3%。

distilbert-base-uncased-emotion - DistilBERT情感分析模型:小巧快速且准确
DistilBERTGithubHugging FaceHuggingface开源项目情感分析文本分类模型自然语言处理
这是一个基于DistilBERT的情感分析模型,体积比BERT小40%,速度更快,同时保持93.8%的准确率。模型可将文本分类为6种情感,每秒处理398.69个样本,性能优于BERT、RoBERTa和ALBERT同类模型。该模型采用情感数据集微调,通过简单pipeline即可快速部署使用。
bert-base-uncased-yelp-polarity - BERT模型基于Yelp评论数据集实现高准确率情感分析
GithubHuggingfaceTextAttackbert-base-uncased序列分类开源项目模型模型微调自然语言处理
该项目基于bert-base-uncased模型,利用TextAttack框架和yelp_polarity数据集进行微调,构建了一个文本情感分类器。经过5轮训练,模型在评估集上达到96.99%的准确率。支持最大256的序列长度,专门用于Yelp评论的情感分析。模型采用16的批次大小和5e-05的学习率,展现出优秀的性能表现。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
ko-sbert-nli - 基于SBERT架构的韩语语义相似度模型实现文本向量化
GithubHuggingfacesentence-transformers开源项目文本嵌入模型自然语言处理语义搜索韩语模型
该模型基于sentence-transformers框架,将韩语文本转化为768维向量。经KorNLI数据集训练,在KorSTS评估中获83.16%相关性。适用于句子编码、语义搜索和文本聚类,支持Python接口和pip安装。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
indobert-emotion-classification - 高性能印尼语情感分类BERT模型
GithubHuggingfaceIndoBERTtransformer开源项目情感分类模型模型导入自然语言处理
indobert-emotion-classification是一个基于BERT的印尼语情感分析模型。该模型能够对印尼语文本进行情感分类,支持多种情感标签。通过Hugging Face Transformers库,indobert-emotion-classification可以轻松集成到各种自然语言处理项目中。这个模型适用于分析印尼语社交媒体内容、客户反馈等文本数据的情感倾向,为研究人员和开发者提供了有力的工具。
EnvironmentalBERT-environmental - BERT模型在ESG环境文本分类领域的创新应用
ESGEnvironmentalBERTGithubHuggingface开源项目机器学习模型环境文本分类自然语言处理
EnvironmentalBERT-environmental是一个针对ESG领域环境文本分类的优化BERT模型。通过2000条环境数据集的微调,该模型能有效识别环境相关文本。它为研究人员提供了ESG分析和环境行为研究的有力工具,支持文本分类pipeline,操作简便。这一创新为ESG评估带来了精确的NLP解决方案,推动了环境、社会和治理领域的量化分析。
distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
bertweet-base-emotion-analysis - BerTweet英文情感分析模型集成EmoEvent语料库
BERTweetGithubHuggingface开源项目情感分析数据集机器学习模型自然语言处理
bertweet-base-emotion-analysis是一个基于BerTweet架构的英文情感分析开源模型,通过EmoEvent语料库训练而成。作为pysentimiento库的组成部分,该模型支持英文文本的情感识别与分析,主要应用于学术研究领域。该模型结合预训练语言模型技术,为自然语言处理研究提供了实用的情感分析工具。
KR-ELECTRA-generator - 韩语预训练模型专注提升非正式文本处理能力
GithubHuggingfaceKR-ELECTRA开源项目机器学习模型深度学习自然语言处理韩语模型
KR-ELECTRA是首尔国立大学开发的韩语ELECTRA模型,专注提升非正式文本处理能力。该模型使用34GB平衡的书面和口语韩语数据预训练,采用30,000个基于形态素的词汇。KR-ELECTRA在多项韩语NLP任务中表现卓越,尤其在非正式文本相关任务上效果显著。模型支持TensorFlow和PyTorch框架,为韩语自然语言处理研究提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号