Project Icon

Recommender_System

推荐系统全面指南:从理论基础到工业实践

本项目系统介绍工业级推荐系统的理论知识,包括召回、排序、特征交叉和用户行为序列建模等核心环节。内容涵盖基于TensorFlow2的模型训练,以及高性能、高并发、高可用的Golang推理微服务实现。同时提供Scikit-learn和TensorFlow编程基础,为推荐系统学习者提供全面的知识体系和实践指导。

EffectiveTensorflow - TensorFlow 2的深入讲解,包括基本概念、广播机制、符号计算和控制流操作等
GithubTensorFlow 2开源项目张量梯度下降神经网络自动微分
本指南深入讲解 TensorFlow 2,包括基本概念、广播机制、符号计算和控制流操作等。探讨如何通过重载操作符和控制流来提升代码效率,与 NumPy 的兼容性增强了代码的可读性。同时,介绍了广播机制的优势与潜在缺点,并展示了如何在多设备上使用 TensorFlow 2 的新 API 高效地处理和优化大型神经网络。
dmls-book - 全面设计可靠且适应性强的机器学习系统
Chip HuyenGithubMLOps开源项目机器学习系统生产环境设计
本书介绍了设计可靠、可扩展和易维护的机器学习系统的全面方法。内容涵盖数据工程、指标选择、模型部署、监控和自动化流程,同时探讨了负责任AI的重要性。适合工程师、数据科学家和技术领导者阅读,帮助他们在实际问题中应用机器学习技术。
SIGIR2020_peterrec - 基于序列行为的参数高效迁移学习推荐方法
GithubPeterRec开源项目推荐系统深度学习用户建模迁移学习
SIGIR2020_PeterRec提出了一种基于用户序列行为的参数高效迁移学习方法,用于改进推荐系统性能。该方法在冷启动等场景中表现出色。项目提供了多个大规模数据集,用于评估各类推荐模型,包括基础模型、可迁移模型、多模态模型和大语言模型。项目还包含PyTorch代码实现和详细的使用说明。
RecBole-GNN - 图神经网络推荐算法开源库
GithubPyTorchRecBole-GNN图神经网络开源库开源项目推荐系统
RecBole-GNN是一个开源的图神经网络推荐算法库,基于PyTorch和RecBole构建。该库专注于复现和开发GNN推荐算法,涵盖通用、序列和社交推荐三大类别。它提供统一API、高效图处理模块和丰富的算法库,支持多种前沿GNN推荐模型。RecBole-GNN还提供详细的性能对比,为研究人员提供便捷的GNN推荐算法开发和评估平台。
rexmex - 推荐系统评估指标和报告工具库
Githubrexmex开源库开源项目推荐系统机器学习评估指标
rexmex是一个用于推荐系统评估的Python库,提供了全面的评估指标集合,涵盖排名、评分、分类和覆盖率等方面。该库集成了经典指标和最新数据挖掘研究成果,并提供报告生成和性能可视化功能。rexmex操作简便,适用于多种推荐系统场景,可帮助研究人员和开发者全面评估系统性能。
LLM4RS - 将ChatGPT应用于推荐系统的实证研究
ChatGPTGithub大语言模型实验分析开源项目排序策略推荐系统
LLM4RS项目从信息检索角度评估了ChatGPT在推荐系统中的表现。研究对比了点式、配对式和列表式排序方法,发现ChatGPT在多个领域数据集上表现突出,其中列表式排序在成本和性能间达到最佳平衡。项目还探讨了ChatGPT解决冷启动问题和提供可解释推荐的潜力。LLM4RS提供了全面的评估框架、数据集和实验结果,为研究大语言模型在推荐系统中的应用提供了重要参考。
Machine-Learning-Interviews - 机器学习工程师面试指南,大厂技术面试全攻略
AI EngineeringFAANGGithubMachine Learning大厂面试开源项目面试准备
该指南专为机器学习工程师和应用科学家职位的技术面试设计,特别适用于FAANG等大厂。内容包括算法与数据结构、机器学习编码、系统设计、基础知识和行为面试模块。作者基于自身的面试经验和笔记编写,分享如何有效准备常见面试模块。尽管不同公司的机器学习面试结构有所不同,本指南的模块对其他相关职位也有参考价值,帮助应聘者更好地应对机器学习领域的技术挑战。
Complete-Life-Cycle-of-a-Data-Science-Project - 数据科学项目全生命周期实践指南
APIGithubweb爬虫开源项目数据收集数据科学数据集
该项目提供了数据科学项目完整生命周期的实践指南。涵盖数据收集、清洗、特征工程、模型训练及部署全过程。详细介绍网络爬虫、API、数据库等数据获取方法,并汇总多个开放数据集资源。同时包含数据预处理、特征选择、模型评估等关键环节的最佳实践。对数据科学学习者和从业人员具有重要参考价值,有助于全面把握数据科学项目流程。
cs-self-learning - 全面系统的计算机科学自学开源指南
CS自学Github开源课程开源项目编程语言计算机科学项目实践
这是一份全面的计算机科学自学指南,涵盖编程语言、算法、人工智能等多个领域。指南提供系统化学习路径,汇集优质开源课程资源和项目实践经验。内容包括多种主流编程语言、数学基础、计算机系统、网络、操作系统、编译原理、机器学习等核心领域。通过完成多个实际项目,学习者可以全面提升编程能力和解决问题的技巧。经过2-3年的学习,自学者可以掌握扎实的理论基础和实践能力,为未来的科研或就业做好准备。该指南适合计算机专业学生和有志于转行IT行业的人士使用。
datascience - 数据科学学习路线图 从基础到高级的系统指南
Github开源项目数据分析数据库数据科学概率论统计学
这是一个系统的数据科学学习路线图项目,涵盖了从基础数学到高级统计分析的关键知识点。内容包括矩阵代数、哈希函数、关系代数等基础,以及数据库操作、ETL、NoSQL等实用技能,还有数据可视化和探索性分析等统计学内容。该项目为数据科学学习者提供了一个全面且结构化的学习框架。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号